
ESO Classes: Definitions, Class mappings, Role Mappings, Assertions and Examples of
the Instantiation of the Assertions.

This file provides a human readable version of the Event and Situation Ontology Version 2,
developed for the NewsReader project (www.newsreader-project.eu).

All classes are in alphabetical order. For each class we provide:
-the subclass relation
-the class definition
-the mappings from ESO classes to FrameNet and SUMO (as available online at June 20, 2015)
-the mappings from ESO roles to FrameNet Frame Elements
-the assertions for each class defining the situation that holds before, after and/or during the 
 event (in a non-formal transcription).
-examples that show what the ESO class assertions can infer from a sentence annotated with 
 FrameNet-based SRL.

Date: June 24th 2015

For questions and remarks, please contact:
r.h.segers@vu.nl

ESO CLASSES IN ALPHABETICAL ORDER:

-Arriving subclassOf:Translocation
"The subclass of Translocation where someone or something arrives at a location."

Class mappings:
closeMatch: fn:Arriving
closeMatch: fn:Vehicle_landing
closeMatch: sumo:Arriving

For the roles and assertions and, see: Translocation.

EXAMPLES:

"Mary approached the White House with a grim face."

pre situation Mary notAtPlace the White House
post situation Mary atPlace the White House

"Mary arrived in Washington from Dulles National Airport."

pre situation Mary atPlace Dulles National Airport
Mary notAtPlace Washington

post situation Mary atPlace Washington
Mary notAtPlace Dulles National Airport

-Attacking subclassOf: IntentionalEvent
"The subclass of IntentionalEvent where someone or something is assaulted 
with the intention to cause some harm."

Class mappings:
closeMatch: fn:Attack
closeMatch: sumo:ViolentContest

Role mappings:
damaging-undergoer: fn: Object, fn:Victim, fn: Experiencer, fn:Body_part, 



     fn: Patient, fn: Artifact
damaging-state-1: - (blank node)
damaging-state-2: - (blank node)
damaging-damage: -
activity: -

Assertions:
pre situation: damaging-undergoer inState damaging-state_1 

damaging-state-1 hasRelativeValue "+"

post situation: damaging-undergoer inState damaging-state_2 
damaging-state-2 hasRelativeValue "-"
damaging-undergoer isDamaged true
damaging-undergoer hasDamage damaging-damage
damaging-damage hasNegativeEffectOn activity 

Note that the last two assertions will not be instantiated as no FrameNet roles exist 
for the ESO roles damaging-damage and activity.
Note that damaging-state-1 and damaging-state-2 are modeled with an existential 
restriction that allows to create a blank node in the named graph.

EXAMPLES:

"Marie attacked John with a knife."
 

pre situation John inState :xyz123
:xyz123 hasRelativeValue +

post situation John inState :xyz124
:xyz124 hasRelativeValue -
 John isDamaged  true

"The army bombed the power plant."

pre situation the power plant inState :xyz125
xyz125 hasRelativeValue +

post situation the power plant inState :xyz126
:xyz126 hasRelativeValue -
 the power plant isDamaged  true

"The hurricane struck West-Virginia."

pre situation West-Virginina inState :abc123
:abc123 hasRelativeValue +

post situation West-Virginia inState :abc124
:abc124 hasRelativeValue -
West-Virginia isDamaged true

-BeginningARelationship subclassOf: IntentionalEvent
"The subclass of IntentionalEvent were people start or form a personal 
relationship with each other".

Class mappings:
broadMatch: fn:Forming_relationships

Role mappings:
relationship-partner-1: fn:Partner_1
relationship-partner-2: fn:Partner_2
relationship-partners: fn:Partner_1, fn:Partner_2, fn:Partners

Assertions:



pre situation    relationship-partner-1 notInRelationshipWith relationship-partner_2
   relationship-partners inRelationship false

post situation  relationship-partner-1 inRelationshipWith  relationship-partner_2 
   relationship-partners inRelationship true

EXAMPLES:

"John married Mary in 2011."

pre situation John notInRelationshipWith Mary
John, Mary inRelationship false

post situation John inRelationshipWith Mary
John, Mary inRelationship true

"The secret wedding of John and Mary!"

pre situation John and Mary inRelationship false
post situation John and Mary inRelationship true

"John married again in 2014."

pre situation John inRelationship false
post situation John inRelationship true

-BeingAtAPlace subclassOf: StaticEvent
“Static event where some entity is at a location.”

Class mappings:
closeMatch: fn:Residence
closeMatch: fn:Presence
closeMatch: fn:Temporary_stay
closeMatch: fn:Being_located 

Role mappings:
atPlace-theme: fn:Theme, fn:Resident, fn:Entity, fn:Guest.
atPlace-location: fn:Location

Assertions:
during situation: atPlace-theme atPlace atPlace-location

EXAMPLES:

"Marie stayed at the Hilton Hotel."

during situation Marie atPlace Hilton Hotel

"Oil reservoirs are present in Rotterdam."

during situation oil reservoirs atPlace Rotterdam

"John lives in Amsterdam."

during situation John atPlace Amsterdam

"John is the first resident at King's Landing."



during situation John atPlace King's Landing

-BeingDamaged  subclassOf: StaticEvent
“Static event where some entity is in a damaged state.”

Class mappings:
broadMatch: fn:Being_operational

Role mappings:
damaging_undergoer: fn:Object, fn:Victim, fn: Experiencer, fn:Body_part, 

      fn: Patient, fn: Artifact.
damaging-damage: -
activity: -

Assertions:
during-situation: damaging-undergoer isDamaged true

damaging-undergoer hasDamage damaging-damage
damaging-damage hasNegativeEffectOn activity 

Note that the last two assertions will not be instantiated as no FrameNet roles exist for 
the ESO roles damaging-damage and activity.

EXAMPLE:

"The suspension of this car is broken."

during-situation
the suspension of this car isDamaged true
(this car hasDamage broken suspension)
(broken suspension hasNegativeEffectOn operating)

-BeingEmployed subclassOf: StaticEvent
“Static event where someone is working in a position and is compensated for her work 
by some form of payment.”

Class mappings:
closeMatch: fn:Being_employed
closeMatch: fn:Employing

Role mappings:
employment-employee: fn:Employee
employment-employer: fn:Employer
employment-function: fn:Position
employment-value: fn:Compensation
employment-task: fn:Task
employment-attribute: -

Assertions:
during situation employment-employee employedAt employment-employer

employment-employee hasFunction employment-function
employment-employee hasTask employment-task
employment-employee hasAttribute employment-attribute 
employment-attribute hasValue employment-value
employment-employee isEmployed true

Note that employment-attribute is modeled with an existential restriction that allows 
to create a blank node in the named graph.

EXAMPLES:



"Ford employed Marie as CFO."

during situation Marie employedAt Ford
Marie hasFunction CFO
Marie isEmployed true

"Marie works as CFO for 2000 dollar a month."

during situation Marie hasFunction CFO
Marie hasAttribute :xyz667
:xyz667 hasValue 2000 dollar
Marie isEmployed true

"Marie is employed at Ford to handle the severe financial issues."

during situation Marie employedAt Ford
Marie hasTask to handle the severe financial issues
Marie isEmployed true

-BeingInAPersonalRelationship subclassOf:StaticEvent
"The subclass of StaticEvent where persons are in some personal relationship."

Class mappings:
closeMatch: fn:Personal_relationship

Role mappings:
relationship-partner-1: fn:partner_1
relationship-partner-2: fn:partner_2
relationship-partners: fn:partners, fn: partner_1, fn: partner_2

Assertions:
during situation relationship-partner-1 inRelationshipWith   relationship-partner_2
during situation relationship-partners inRelationship   true

EXAMPLES:

"John dates Marie."

during-situation John   inRelationshipWith Marie
John, Marie   inRelationship true

"John is married to Marie."

during situation John   inRelationshipWith Marie
John, Marie    inRelationship true

-BeingInExistence subclassOf: StaticEvent
“Static event where some entity exists.”

Class mappings:
closeMatch: fn:Existence

Role mappings:
exist-theme: fn:Entity

Assertions:
during situation exist-theme exist true

EXAMPLES:



"Cars with a Wankel engine still exist."

during situation cars with a Wankel engine exist true

"There were human settlements near the volcano."

during situation human settlements near the volcano exist  true

-BeingInUse subclassOf StaticEvent
"The static event class where something is in use by an agent 
(in some particular role or for some purpose)."

Class mappings:
closeMatch: fn:Using
closeMatch: fn:UsingResource 
broadMatch: fn:BeingOperational

Role mappings:
inuse-entity-1: fn:Agent 
inuse-entity-2 fn:Instrument, fn:Resource, fn:Object
inuse-function: fn:Role 
inuse-purpose: fn:Purpose

Assertions:
during situation inuse-entity_1 uses   inuse-entity_2

inuse-entity_2 hasFunction   inuse-function
inuse-entity_2 hasPurpose   inuse-purpose
inuse-entity_2 inFunction   true

"Ford uses codename X for operations in India."

during situation Ford uses   codename X
codename X hasPurpose   operations in India
codename X inFunction   true

"Ford used codename X name as cover."

during situation Ford uses   operational name
codename X hasFunction   cover
codename X inFunction   true

"Mary used her Peugeot 205 to drive to work."

during situation Mary uses   her Peugeot 205
her Peugeot 205 hasPurpose   drive to work
her Peugeot 205 inFunction   true

"The system works."

during situation the system inFunction true

-BeingLeader subclassOf: StaticEvent
“StaticEvent where someone is leader of some group of persons or organization.”

Class mappings:
closeMatch: fn:Leadership

Role mappings:
leader-entity: fn:Leader



leader-governed-entity: fn:Governed
leader-function: fn:Role

Assertions:
during situation: leader-entity isLeader true

leader-entity isLeaderOf leader-governed_entity 
leader-entity hasFunction leader-function 

EXAMPLES:

"John chairs the committee"

during situation John isLeader true
John isLeaderOf the committee

"John ruled over Apple as a king"

during situation John isLeader true
John isLeaderOf Apple
John hasFunction king

"Ford is setting up an operation which is headed by Mary as general manager"

during situation Mary isLeader true
Mary hasFunction general manager

"John is chairman of the committee."

during situation John isLeader true
John isLeaderOf the committee

-BeingOperational subclassOf: StaticEvent
Static event where some device is in function.

Class mappings:
closeMatch: fn:Being-operational

Role mappings:
operational-theme: fn:Object

Assertions:
during situation operational-theme inFunction true

EXAMPLES:

"The new welding power supply works."

during situation the new welding power supply inFunction true

"The new welding power supply is functional."

during situation the new welding power supply inFunction true

-Borrowing subclassOf: Getting
“The subclass of Getting where a person gets something in possession for some period of 
time after which the item should be given back.”



Class mappings:
closeMatch: fn:Borrowing
closeMatch: fn:Borrowing

For the roles and assertions, see: ChangeOfPossession.

EXAMPLE:

"Mary borrowed the car from John"

pre situation John hasInPossession the car
Marie notHasInPossession the car

post situation John notHasInPossession the car
Marie hasInPossession the car

-Buying subclassOf: FinancialTransaction
The subclass of FinancialTransaction where some entity changes of ownership in 
exchange for money. Note that the buyer is not necessarily the new owner of the entity.

Class mappings:
closeMatch: fn:Commerce_buy
closeMatch: sumo:Buying

For the roles and assertions, see: ChangeOfPossession.

EXAMPLES:

"John bought the flowers for 10 dollar."

pre situation John hasInPossession 10 dollar
John notHasPossession the flowers

post situation John hasInPossession the flowers
John notHasInPossession 10 dollar

during situation the flowers hasValue 10 dollar

"John bought the flowers from Mary."

pre situation John notHasInPossession the flowers
Mary hasInPossession the flowers

post situation John hasInPossession the flowers
Mary notHasInPossession the flowers

"John bought the flowers for Mary."

pre situation John notHasInPossession flowers
Mary notHasInPossession flowers

post situation John hasInPossession flowers
Mary hasInPossession flowers*

*Note that Mary is the 'Recipient' in FrameNet. While this FrameNet role is important for 
some subclasses of eso: ChangeOfPossession, for eso:Buying, this role is less prominent. 
However, the roles and assertions for this sub hierarchy are modeled at the highest possible 
level in the ontology (ChangeOfPossession) and are inherited by e.g. Buying. 
As a result, in some cases the assertions of the post situation of Buying can generate a 
questionable statement.

-ChangeOfPossession subclassOf: DynamicEvent
“The subclass of DynamicEvent where some entity changes possession. Note that this often 
but not necessarily implies a change of location of the entity.”



Class mappings: 
relatedMatch:  fn:Transfer
closeMatch: sumo: ChangeOfPossession

Role mappings:
possession-owner_1: fn:Supplier, fn:Exporter, fn:Donor, fn:Victim, fn:Source, 

    fn:Lender, fn:Exporting_area, fn:Sender, fn:Seller
possession-owner_2: fn:Perpetrator, fn:Importing_area, fn:Importer, fn:Lessee, 

    fn:Buyer, fn:Recipient, fn:Borrower, fn:Agent
possession-theme: fn:Theme, fn:Goods, fn:Possession

Assertions:
pre situation possession-owner_1 hasInPossession possession-theme

possession-owner_2 notHasInPossession possession-theme
post situation possession-owner_1 notHasInPossession possession-theme

possession-owner_2 hasInPossession possession-theme

EXAMPLES:

"Marie stole the car keys from John"

pre situation John hasInPossession car keys
Marie notHasInPossession car keys

post situation John notHasInPossession car keys
Marie hasInPossession car keys

"Ford exported 3000 cars to India last month"

pre situation Ford hasInPossession 3000 cars
India notHasInPossession 3000 cars

post situation Ford notHasInPossession 3000 cars
India hasInPossession 3000 cars

-ChangingShape subclassOf:InternalChange 
“The subclass of InternalChange where the shape of an entity is changed.”

Class mappings:
closeMatch: fn:Manipulate_into_shape
closeMatch: fn:Reshaping
closeMatch: sumo:ShapeChange

Role mappings:
changingshape-entity: fn:Undergoer, fn:Theme
changingshape-initialshape: -
changingshape-finalshape: fn:Configuration, fn:Resultant_configuration, fn:Result

 
Assertions:
pre situation changingshape-entity inState changingshape-initialshape 

changingshape-entity notInState changingshape-finalshape

post situation changingshape-entity inState changingshape-finalshape
changingshape-entity notInState changingshape-initialshape

Note that changingshape-initialshape and changingshape-finalshape are modeled with 
an existential restriction that allows to create a blank node in the named graph.

EXAMPLES:



"John moulded the paste into a ball."

pre situation the paste inState :xyz130
the paste notInState ball

post situation the paste inState ball
the paste notInState :xyz130

"John folded the paper."

pre situation the paper inState :xyz134
the paper notInState :abc123

post situation the paper inState :abx123
the paper notInState :xyz134

-Collaboration subclassOf: StaticEvent
“Static event where people work together for some period of time.”

Class mappings:
closeMatch: fn:Collaboration
closeMatch: sumo:Cooperation

Role mappings:
collaboration-partner-1: fn:Partner_1
collaboration-partner-2: fn:Partner_2
collaboration-partners: fn:Partner_1, fn:Partner_2, fn:Partners
collaboration-project: fn:Undertaking

Assertions:
during situation collaboration-partner_1 collaboratesWith collaboration-partner_2 

collaboration-partners inCollaboration true
collaboration-partners hasProject collaboration-project

EXAMPLES:

"John collaborates with Mary on a book."

during situation John collaboratesWith Mary
John, Mary hasProject a book
John, Mary inCollaboration true

"The left wing parties are conspiring to impeach the president."

during situation the left wing parties hasProject to impeach the president
the left wing parties inCollaboration true

-Creating subclassOf: InternalChange
“The subclass of InternalChange where something is made, created, 
build, constructed, etc.”

Class mappings:
closeMatch: fn:Building

      closeMatch: fn:Intentionally_create
        closeMatch: fn:Creating
        closeMatch: fn:Manufacturing
        closeMatch: sumo:Constructing

closeMatch: sumo:Creation
      closeMatch: sumo:Manufacture
        closeMatch: sumo:Making

Role mappings:
creating-theme: fn: Product, fn:Created_entity

Assertions:



pre situation creating-theme exist false
post situation creating-theme exist true

EXAMPLES:

"The company was founded in 1981."

pre situation the company exist false
post situation the company exist true

"Rover assembled 22.000 Morris Minis from 1986 onwards."

pre situation 22.000 Morris Minis exist false
post situation 22.000 Morris Minis exist true

"Mary builds a new house on the hill."

pre situation a new house on the hill exist false
post situation a new house on the hill exist true

-Damaging subclassOf: InternalChange
“The subclass of InternalChange where something is damaged.”

Class mappings:
closeMatch: fn:Render_nonfunctional, fn:Damaging
closeMatch: sumo:Damaging

Role mappings:
damaging-undergoer: fn: Object, fn:Victim, fn: Experiencer, fn:Body_part, 

     fn: Patient, fn: Artifact
damaging-state-1: -
damaging-state-2: -
damaging-damage: -
activity: -

Assertions:
pre situation: damaging-undergoer inState damaging-state_1

damaging-state_1 hasRelativeValue "+"

post situation: damaging-undergoer inState damaging-state_2
damaging-state_2 hasRelativeValue "-"
damaging-undergoer isDamaged true
damaging-undergoer hasDamage damaging-damage
damaging-damage hasNegativeEffectOn activity 

Note that the last two assertions will not be instantiated as no FrameNet roles exist for 
the ESO roles 'damaging-damage' and 'activity'.
Note  that damaging-state1 and damaging-state-2 have an existential restriction that allows
to create a blank node in the named graph.

EXAMPLES:

"Marie dented the car"

pre situation car inState :abc123
:abc123 hasRelativeValue +

post situation car inState :xyz556
:xyz556 hasRelativeValue -
car isDamaged true

"John incapacitated the aircraft."



pre situation the aircraft inState :efg123
:efg123 hasRelativeValue +

post situation the aircraft inState :efg345
:efg345 hasRelativeValue -
the aircraft isDamaged true

-Decreasing subclassOf: QuantityChange
"The subclass of QuantityChange where some physical quantity or value is decreased."

Class mappings:
broadMatch: fn:Change_of_quantity_of_possession

        broadMatch: fn:Cause_change_of_position_on_a_scale 
broadMatch: fn:Change_position_on_a_scale 
broadMatch: fn:Proliferating_in_number

      broadMatch: fn: Expansion
broadMatch: fn: Cause_expansion
closeMatch: sumo:Decreasing

       Role mappings:
quantity-item: fn:Item, fn:Possession, fn:Set
quantity-attribute: fn:Attribute, fn:Dimension
quantity-ratio: fn:Size_change, fn:Difference
quantity-value_1: fn:Initial_value, fn:Initial_number, fn:Initial_size, fn:Value_1    
quantity-value_2: fn:Final_value, fn:Final_number, fn:Value_2, fn:Result_size

Assertions:
pre situation quantity-item hasAttribute quantity-attribute 

quantity-attribute hasRelativeValue +
quantity-attribute hasValue quantity-value_1

post situation quantity-item hasAttribute quantity-attribute 
quantity-attribute hasRelativeValue -
quantity-attribute hasValue quantity-value_2
quantity-item hasRelativeDecrease quantity-ratio

Note that quantity-attribute is modeled with an existential restriction that allows to 
create a blank node in the named graph.

EXAMPLES:

"Ford decreased the production with 2%."

pre situation production hasAttribute :qwe123
:qwe123 hasRelativeValue +

post situation production hasAttribute :qwe123
:qwe123 hasRelativeValue -
production hasRelativeDecrease 2%

"Apple lowered the price of the Iphone from 600 to 500 dollar."

 pre situation Iphone hasAttribute price
price hasRelativeValue +
price hasValue 600

 post situation Iphone hasAttribute price
price hasRelativeValue -
price hasValue 500

"The profit shrunk dramatically."

pre situation profit hasAttribute :bnm234
:bnm234 hasRelativeValue +



post situation profit hasAttribute :bnm234
:bnm234 hasRelativeValue -

-DestroyingsubclassOf: InternalChange
“The subclass of InternalChange where something gets destroyed.”

Class mappings:
closeMatch: fn:Cause_to_fragment
closeMatch: fn:Destroying
closeMatch: sumo:Destruction

Role mappings:
destroying-theme: fn:Whole_patient, fn:Executed, fn:Undergoer, fn:Victim

Assertions:
pre situation: destroying-theme exist true
post situation: destroying-theme exist false

EXAMPLES:

"They demolished the Vauxhall factory."

pre situation the Vauxhall factory exist true
post situation the Vauxhall factory exist false

"Mary tore up the license agreement."

pre situation the license agreement exist true
post situation the license agreement exist false

-Distribution subclassOf: Translocation
“The subclass of Translocation where someone or something translocates a physical object 
from one location to a bigger area.”

Class mappings: 
closeMatch: fn:Dispersal

For the assertions and role mappings, see: Translocation.

EXAMPLES

"Bats spread the disease across Sudan."

pre situation the disease notAtPlace Sudan
post situation the disease atPlace Sudan

"The engines were mainly distributed in Korea."

pre situation the engines notAtPlace Korea
post situation the engines atPlace Korea

-DynamicEvent This class is the root of the dynamic event class hierarchy.
(no mappings, no assertions)

-EndingARelationship subclassOf: IntentionalEvent
"The subclass of IntentionalEvent were people end a relationship with each other."

Class mappings: 



broadMatch: fn:Forming_relationships

Role mappings:
relationship-partner-1: fn:Partner_1
relationship-partner-2: fn:Partner_2
relationship-partners: fn:Partner_1, fn:Partner_2, fn:Partners

pre situation relationship-partner_1 inRelationshipWith  relationship-partner_2
relationship-partners inRelationship true

post situation relationship-partner_1 notInRelationshipWith relationship-partner_2 
relationship-partners inRelationship false

EXAMPLES

"Mary split up with John."

pre situation John inRelationshipWith Mary
John, Mary inRelationship true

post situation John notInRelationshipWith Mary
John, Mary inRelationship false

"John divorced in 2013."

pre situation John inRelationship true
post situation John inRelationship false

"The divorce of John and Mary is on the front page of all tabloids!"

pre situation John and Mary inRelationship false
post situation John and Mary inRelationship true

-Escaping subclassOf: Leaving
“The subclass of Leaving where a person leaves an unwanted location.”

Class mappings
closeMatch: fn:Escaping
closeMatch: fn:Fleeing
closeMatch: sumo:Escaping

For the assertions and role mappings, see: Translocation.

EXAMPLES:

"John escaped from Alcatraz."

pre situation John   atPlace Alcatraz
post situation John   notAtPlace Alcatraz

"John fled to the United States."

pre situation John   notAtPlace the United States
post situation John   atPlace the United States

-Exporting subclassOf: Selling
“The subclass of Selling where goods are exported to another nation 
in exchange for money.”

Class mappings:



closeMatch: fn:Exporting
closeMatch: sumo:Exporting

For the assertions and role mappings, see: FinancialTransaction

EXAMPLES:

"Ford exported 10.000 cars to India."

pre situation Ford hasInPossession 10.000 cars
India notHasInPossession 10.000 cars

post situation Ford notHasInPossession 10.000 cars
India hasInPossession 10.000 cars

"Car exportation to India."

pre situation India notHasInPossession car
post situation India hasInPossession car

-FinancialTransaction: subclassOf: ChangeOfPossession
"The subclass ofChangeOfPossession where some item changes of ownership 
in exchange for money."

Class mappings:
closeMatch: fn:CommercialTransaction
closeMatch: sumo:FinancialTransaction

Role mappings:
possession-financial-asset: fn:Money

Inherited role mappings:
possession-owner_1: fn:Supplier, fn:Exporter, fn:Donor, fn:Victim, fn:Source, fn:Lender, 

    fn:Exporting_area, fn:Sender, fn:Seller
possession-owner_2: fn:Perpetrator, fn:Importing_area, fn:Importer, fn:Lessee, fn:Buyer, 

    fn:Recipient, fn:Borrower, fn:Agent
possession-theme: fn:Theme, fn:Goods, fn:Possession
possession-financial-asset: fn:Money

Assertions:
pre situation possession-owner_1 notHasInPossession poss.-financial-asset

possession-owner_2 hasInPossession poss.-financial-asset
post situation possession-owner_1 hasInPossession poss.-financial-asset

possession-owner_2 notHasInPossession poss.-financial-asset
during situation possession-theme hasValue possession-value

Inherited assertions from ChangeOfPossession:

pre situation possession-owner_1 hasInPossession possession-theme
possession-owner_2 notHasInPossession possession-theme

post situation possession-owner_1 notHasInPossession possession-theme
possession-owner_2 hasInPossession possession-theme

EXAMPLES:

"Marie bought the car from John for 600 dollars"

pre situation Marie hasInPossession 600 dollar
Marie notHasInPossession the car
John hasInPossession the car
John notHasInPossession 600 dollar



post situation Marie hasInPossession the car
Marie notHasInPossession 600 dollar
John hasInPossession 600 dollar
John notHasInPossession the car

during situation the car hasValue 600 dollar

"Mary paid 600 dollar for the car."

pre situation Mary notHasInPossession the car
Mary hasInPossession 600 dollar

post situation
Mary hasInPossession the car
Mary notHasInPossession 600 dollar

during situation the car hasValue 600 dollar

-Getting subclassOf: ChangeOfPossession
“The subclass of ChangeOfPossession where a person gets or receives some item.”

Class mappings:
closeMatch: fn:Receiving
closeMatch: fn:Getting
closeMatch: sumo:Getting

For the assertions and role mappings, see: ChangeOfPossession.

EXAMPLES:

"Mary received the strategic report from John."

pre situation John hasInPossession the strategic report
Mary notHasInPossession the strategic report

post situation John notHasInPossession the strategic report
Mary hasInPossession the strategic report

"Mary gained the respect of her staff."

pre situation Mary notHasInPossession the respect of her staff
post situation Mary hasInPossession the respect of her staff

"Ford secured the European market."

pre situation Ford notHasInPossession the European market
post situation Ford hasInPossession the European market

-Giving subclassOf: ChangeOfPossession
The subclass of ChangeOfPossession where a person gives something to someone else.

Class mappings:
closeMatch: fn:Sending
closeMatch: fn:Giving
closeMatch: fn:Supply
closeMatch: sumo:Giving

For the assertions and role mappings, see: ChangeOfPossession.

EXAMPLES:



"Mary gave John a nice bouquet."

pre situation Mary hasInPossession a nice bouquet
John notHasInPossession a nice bouquet

post situation Mary notHasInPossession a nice bouquet
John hasInPossession a nice bouquet

"The US shipped tents and food to Indonesia after the tsunami."

pre situation the US hasInPossession tents and food
Indonesia notHasInPossession tents and food

post situation the US notHasInPossession tents and food
Indonesia hasInPossession tents and food

-HavingAValue subclassOf: StaticEvent
"The subclass of StaticEvent where something is having some value."

Class mappings:
closeMatch: fn:Amounting_to. 

Role mappings:
value-attribute: fn:Attribute
value: fn:Value

Assertions:
during situation value-attribute hasValue value

EXAMPLE:

"Maries income amounted to 100.000 euro a year."

during situation Maries income hasValue 100.000 euro

-HavingInPossession subclassOf: StaticEvent
"Static event where someone has something in possession."

Class mappings:
closeMatch: fn:Possession
closeMatch: fn:Retaining

Role mappings:
possession-owner: fn:Agent, fn:Owner
possession-theme: fn:Theme, fn:Goods, fn:Possession

Assertions:
during situation possession-owner hasInPossession possession-theme

EXAMPLES:

"Tata Steel has 10.000 employees."

during situation Tata Steel hasInPossession 10.000 employees

"Mary owns a house in Spain."

during situation Mary hasInPossession a house in Spain



"The US retains political support from Europe."

during situation The US hasInPossession political support from Europe

"Mary kept her old wedding gown."

during situation Mary hasInPossession her old wedding gown

-Importing: subclassOf: Buying
“The subclass of Buying where goods are imported from some country in exchange for money."

Class mappings:
closeMatch: fn:Importing
relatedMatch:  sumo:Exporting

For assertions and role mappings, see: FinancialTransaction.

EXAMPLES:

"Canada imported 45.000 cars from Europe last year."

pre situation Europe hasInPossession 45.000 cars
Canada notHasInPossession 45.000 cars

post situation Europe notHasInPossession 45.000 cars
Canada hasInPossession 45.000 cars

"Iran's import of nuclear material was monitored."

pre situation Iran notHasInPossession nuclear material
post situation Iran hasInPossession nuclear material

-Increasing subclassOf: QuantityChange
"The subclass of InternalChange where some physical quantity or value is increased."

Class mappings:
broadMatch: fn:Change_of_quantity_of_possession

        broadMatch: fn:Cause_change_of_position_on_a_scale 
broadMatch: fn:Change_position_on_a_scale 
broadMatch: fn:Proliferating_in_number

      broadMatch: fn: Expansion
broadMatch: fn: Cause_expansion
closeMatch: fn:Cause_proliferation_in_number
closeMatch: sumo:Increasing

Role mappings:
quantity-item: fn: Item, fn:Possession, fn:Set
quantity-attribute: fn:Attribute, fn:Dimension
quantity-ratio: fn:Size_change, fn:Difference
quantity-value_1: fn:Initial_value, fn:Initial_number, fn:Initial_size, fn:Value_1    
quantity-value_2: fn:Final_value, fn:Final_number, fn:Value_2, fn:Result_size

Assertions:
pre situation quantity-item hasAttribute quantity-attribute 

quantity-attribute hasRelativeValue -
quantity-attribute hasValue quantity-value_1

post situation quantity-item hasAttribute quantity-attribute 



quantity-attribute hasRelativeValue +
quantity-attribute hasValue quantity-value_2
quantity-item hasRelativeIncrease quantity-ratio

Note that quantity-attribute is modeled with an existential restriction that allows to 
create a blank node in the named graph.

EXAMPLES:

"Apple raised the price of the Iphone from 500 to 600 dollar."

pre situation Iphone hasAttribute price
price hasRelativeValue -
price hasValue 500

post situation Iphone hasAttribute price
price hasRelativeValue +
price hasValue 600

"Ford increased the production with 2%."

pre situation production hasAttribute :asd123
:asd123 hasRelativeValue -

post situation production hasAttribute :asd123
:asd123 hasRelativeValue +
production hasRelativeIncrease 2%

"Their debt tripled in nine years."

pre situation their debt hasRelativeValue -
post situation their debt hasRelativeValue +

"He widened his eyes."

pre situation his eyes hasAttribute :zxc234
:zxc234 hasRelativeValue -

post situation his eyes hasAttribute :zxc234
:zxc234 hasRelativeValue +

"The balloon expanded with 2 centimetres".

pre situation the balloon hasAttribute :abc123
:abc123 hasRelativeValue -

post situation the balloon hasAttribute :abc123
:abc123 hasRelativeValue +
the balloon hasRelativeIncrease 2 centimetres

-Injuring subclassOf: Damaging
“The subclass of Damaging where someone gets injured (mentally and/or physically)."

Class mappings:
closeMatch: fn:Cause_harm
closeMatch: fn:Experience_bodily_harm
closeMatch: sumo:Injuring

For the assertions and role mappings, see: Damaging.

EXAMPLES:

"Marie wounded John."



pre situation John inState :qwe556
qwe556 hasRelativeValue +

post situation John inState :zxc678
:zxc678 hasRelativeValue -

post situation: John isDamaged true

"John broke his leg after falling off the stage"

pre situation John, his leg inState :abc123
:abc123 hasRelativeValue +

post situation John, his leg inState :abc124
:abc124 hasRelativeValue -

post situation: John, his leg isDamaged true

"Mary broke his leg with her bare hands!"

pre situation his leg inState :jkl234
:jkl234 hasRelativeValue +

post situation his leg inState :asd345
:asd345 hasRelativeValue -

post situation: his leg isDamaged true

-Installing subclassOf: Placing
“The subclass of Placing where some entity is put in a new and fixed location, 
e.g. the installation of fixtures.”

Class mappings:
closeMatch: fn:Installing
closeMatch: sumo:Installing

For the assertions and role mappings, see: Translocation.

EXAMPLES:

"Mary installed a new engine in her Land Rover Defender."

pre situation a new engine notAtPlace Land Rover Defender
post situation a new engine atPlace Land Rover Defender

"John confirmed the installation of cameras in the offices."

pre situation cameras notAtPlace in the offices
post situation cameras atPlace in the offices

-IntentionalEvent subclassOf:DynamicEvent
“The subclass of DynamicEvent where some event is carried out by some 
cognitive agent(s) and with some specific purpose.”

Class mappings:
closeMatch: fn:Intentionally_act
sumo: IntentionalProcess

No assertions are defined for this class.

-InternalChange subclassOf: DynamicEvent
“The subclass of DynamicEvent where some internal quality of an item changes.”



Class mappings:
closeMatch: sumo:InternalChange

No assertions are defined for this class.

-Investing subclassOf: FinancialTransaction
The subclass ofFinancialTransaction where a person or company invests some asset 
in either another or its own company with the prospect of some future profit.

Class mappings:
closeMatch: sumo:Investing

For the assertions, see: FinancialTransaction. 

-JoiningAnOrganization  subclassOf: IntentionalEvent
"The subclass of IntentionalEvent where someone starts working as an employee 
for some organization."

Class mappings:
closeMatch: fn:Hiring, 
closeMatch: fn:Get_a_job
broadMatch: sumo:JoiningAnOrganization

Role mappings:
employment-employee: fn:Employee
employment-employer: fn:Employer
employment-function: fn:Position
employment-value: fn:Compensation
employment-task: fn:Task
employment-attribute: -

Assertions:
pre situation employment-employee notEmployedAt employment-employer

post situation employment-employee employedAt employment-employer
employment-employee isEmployed true
employment-employee hasFunction employment-function
employment-employee hasTask employment-task
employment-employee hasAttribute employment-attribute
employment-attribute hasValue employment-value

Note that employment-attribute is modeled with an existential restriction that allows to  
create a blank node in the named graph.

EXAMPLES:

"Ford hired Mary as their new CEO for 100.000 euro."

pre situation Mary notEmployedAt Ford

post situation Mary isEmployed true
Mary employedAt Ford
Mary hasFunction new CEO
Mary hasAttribute :abc124
:abc124 hasValue 100.000 euro

"John was hired to clean the house."

pre situation -

post situation John isEmployed true



John hasTask to clean the house

"John signed on with Marie to clean her house."

pre situation John notEmployedAt Marie
post situation John isEmployed true

John employedAt Marie
John hasTask to clean her house

-Killing subclassOf: Destroying
“The subclass of Destroying where animate beings are killed.”

Class mappings:
closeMatch: fn:Execution
closeMatch: fn:Killing
closeMatch: sumo:Killing

For assertions and role mappings, see: Destroying.

EXAMPLES:

"Mary was executed by three men in black ties."

pre situation Mary exist true
post situation Mary exist false

"Low levels of oxygen asphyxiated the fish in John's pond."

pre situation the fish in John's pond exist true
post situation the fish in John's pond exist false

-Leaving subclassOf:Translocation
“The subclass of Translocation where someone or something leaves a location.”

Class mappings:
closeMatch: fn:Vehicle_departure_initial_state
closeMatch: fn:Departing
closeMatch: fn:Setting_out
closeMatch: fn:Quitting_a_place
closeMatch: sumo:Leaving.

For the assertions and role mappings, see: Translocation.

EXAMPLES:

"John set out from Lake Louise in a canoe."

pre situation John atPlace Lake Louise
post situation John notAtPlace Lake Louise

"John left for Lake Michigan."

pre situation John notAtPlace Lake Michigan
post situation John atPlace Lake Michigan*

*Note that Johns arrival at Lake Michigan is not certain.

-LeavingAnOrganization subclassOf: IntentionalEvent



"The subclass of IntentionalEvent where a person stops working as an 
employee for an organization."

Class mappings:
closeMatch: fn:Quitting, 
closeMatch: fn:Firing
closeMatch: sumo:TerminatingEmployment

Role mappings:
employment-employee: fn:Employee
employment-employer: fn:Employer
employment-function: fn:Position
employment-task: fn:Task

Assertions:
pre situation employment-employee employedAt employment-employer

employment-employee isEmployed true
employment-employee hasFunction employment-function
employment-employee hasTask employment-task

post situation employment-employee notEmployedAt employment-employer

EXAMPLES:

"Ford fired Mary as their CEO."

pre situation Mary employedAt Ford
Mary isEmployed true
Mary hasFunction CEO

post situation Mary notEmployedAt Ford

"John was fired from cleaning the house."

pre situation John isEmployed true
John hasTask cleaning the house

post situation -

"John left Ford."

pre situation John employedAt Ford
post situation John notEmployedAt Ford

-Lending subclassOf:Giving
“The subclass of Giving where a person gives something in possession for some 
period of time after which the item should be given back.”

Class mappings:
closeMatch: fn:Lending
closeMatch: sumo:Lending

For the assertions and role mappings, see: ChangeOfPossession.

EXAMPLE:

"Mary loaned her car to John."

pre situation Mary hasInPossession her car
John notHasInPossession her car



post situation Mary notHasInPossession her car
John hasInPossession her car

-Meeting subclassOf: StaticEvent
“The static event class where people meet each other, usually intentional and 
for some purpose.”

Class mappings:
closeMatch: fn:Come_together 
closeMatch: fn:Assemble 
closeMatch: fn:Social_event
closeMatch: sumo:Meeting

Role mappings:
meeting-participant: Party_1, Party_2, fn:Attendee, fn:Host, fn:Individuals, 

  fn:Group, fn:Configuration
meeting-place: fn:Place

Assertions:
during situation meeting-participantatPlace meeting-place

meeting-participantinMeeting true

EXAMPLES:

"The Republicans convened in New York to discuss the program."

during situation the Republicans atPlace New York
the Republicans inMeeting true

"John meets Marie in New York"

during situation John atPlace New York
Marie atPlace New York
John, Marie inMeeting true

"The whole group attended the party"

during situation the whole group inMeeting true

-Merging subclassOf: InternalChange
“The subclass of InternalChange where two entities are merged into a whole.”

Class mappings:
closeMatch: fn:Amalgamation
closeMatch: fn:Cause_to_amalgamate
closeMatch: sumo:Combining

Role mappings:
merging-theme_1: fn:Part_1, fn:Parts
merging-theme_2: fn:Part_2
merging-theme_3: fn:Whole

Assertions:
pre situation merging-theme_1 exist true

merging-theme_2 exist true
merging-theme_3 exist false

post situation: merging-theme_1 exist false
merging-theme_2 exist false
merging-theme_3 exist true



EXAMPLES:

"In 1980, EBC merged with KPN into KPN-BC."

pre situation EBC exist true
KPN exist true
KPN-BC exist false

post situation EBC exist false
KPN exist false
KPN-BC exist true

"John blended the herbs and the eggs."

pre situation the herbs and the eggs exist true
post situation the herbs and the eggs exist false

-Motion subclassOf: DynamicEvent
“The subclass of DynamicEvent where some entity moves.”

Class mappings:
closeMatch: fn:Motion
closeMatch: sumo:Motion

No assertions are defined for this class.

-Paying subclassOf: FinancialTransaction
“The subclass of FinancialTransaction where some financial asset is given in exchange 
for some item or in discharge of a debt.”

Class mappings:
closeMatch: fn:Commerce_pay

For the assertions and role mappings, see: FinancialTransaction.

EXAMPLES:

"Ford paid Chrysler 40.000 dollar for John's idea."

pre situation Ford notHasInPossession John's idea
Chrysler hasInPossession John's idea
Ford hasInPossession 40.000 dollar
Chrysler notHasInPossession 40.000 dollar

post situation Ford hasInPossession John's idea
Chrysler notHasInPossession John's idea
Ford notHasInPossession 40.000 dollar
Chrysler hasInPossession 40.000 dollar

during situation John's idea hasValue 40.000 dollar

"Mary paid the bill."

pre situation Mary hasInPossession the bill
post situation Mary notHasInPossession the bill

-Placing subclassOf:Translocation



“The subclass of Translocation where some entity is put in a new location.”

Class mappings:
closeMatch: fn:Placing
closeMatch: sumo:Putting

For the assertions and role mappings, see: Translocation.

EXAMPLES:

“While thinking of Mary, John put the flowers in a vase.”

pre situation flowers notAtPlace in a vase
post situation flowers atPlace in a vase

"Mary loaded all her belongings in the car."

pre situation her belongings notAtPlace in the car
post situation her belongings atPlace in the car

"The sea deposited dead fish on the beach."

pre situation dead fish notAtPlace on the beach
post situation dead fish atPlace on the beach

-QuantityChange subclassOf: InternalChange
“The subclass of InternalChange where some quantity is altered.”

Class mappings:
closeMatch: sumo: QuantityChange

No assertions are defined for this class.

-Removing subclassOf: Translocation
“The subclass of Translocation where some entity is taken away from its location.”

Class mappings:
closeMatch: fn:Removing
closeMatch: sumo:Removing

For the assertions and role mappings, see: Translocation.

EXAMPLES: 

"John removed all the evidence from the archive."

pre situation the evidence atPlace the archive
post situation the evidence notAtPlace the archive

"Mary evacuated the employees from the burning factory."

pre situation the employees atPlace the burning factory
post situation the employees notAtPlace the burning factory

"The Maserati was unloaded from the Boeing 747."

pre situation the Maserati atPlace the Boeing 747
post situation the Maserati notAtPlace the Boeing 747



"John removed all his books."

pre situation -
post situation -

-Renting subclassOf: Getting
“The subclass of Getting where a person gets something in possession from someone else 
for some period in exchange for money.”

Class mappings:
closeMatch: fn:Renting
closeMatch: sumo:Renting

For the assertions and role mappings, see: ChangeOfPossession.

EXAMPLES:

"John leased his Peugeot from ELB."

pre situation John notHasInPossession his Peugeot
ELB hasInPossession his Peugeot

post situation John hasInPossession his Peugeot
ELB notHasInPossession his Peugeot

"Mary rented a room from an old lady."

pre situation Mary notHasInPossession a room
an old lady hasInPossession a room

post situation Mary hasInPossession a room
an old lady notHasInPossession a room

-RentingOut subclassOf: Giving
“The subclass of Giving where a person gives something in possession for 
some period in exchange for money.”

Class mappings:
closeMatch: fn:Renting_out

For the assertions and role mappings, see: ChangeOfPossession.

EXAMPLES:

"The old lady rented a room to Mary."

pre situation Mary notHasInPossession a room
an old lady hasInPossession a room

post situation Mary hasInPossession a room
an old lady notHasInPossession a room

"Mary rented the garage out."

pre situation Mary hasInPossession the garage
post situation Mary notHasInPossession the garage

-Replacing subclassOf: IntentionalEvent
“The subclass of IntentionalEvent were someone or something is replaced 
with someone or something else in a specific role or function."



Class mappings:
closeMatch: fn:Replacing 
closeMatch: fn: Take_place_of 
closeMatch: fn:Change_of_leadership
closeMatch: sumo:Substituting

Role mappings:
replacing-entity_1: fn:Old, fn:Old_order, fn:Old_leader
replacing-entity_2: fn:New, fn:New_leader
replacing-entity_3: fn:Agent
replacing-function: fn:Role, fn:Function

Assertions:
pre situation replacing-entity_1 hasFunction replacing-function

replacing-entity_2 notHasFunction replacing-function
replacing-entity_1 inFunctionFor replacing-entity_3
replacing-entity_1 inFunction true
replacing-entity_2 inFunction false

post situation replacing-entity_1 notHasFunction replacing-function
replacing-entity_2 hasFunction replacing-function
replacing-entity_2 inFunctionFor replacing-entity_3
replacing-entity_1 inFunction false
replacing-entity_2 inFunction true

EXAMPLES:

"Peter replaced Mary by John as CEO of Apple."

pre situation Mary hasFunction CEO of Apple 
John notHasFunction CEO of Apple 
Mary inFunctionFor Peter
Mary inFunction true
John inFunction false

post situation Mary notHasFunction CEO of Apple 
John hasFunction CEO of Apple
John inFunctionFor Peter
Mary inFunction false
John inFunction true

"Mary replaced her Ford Taunus for a Peugeot 205."

pre situation Ford Taunus  inFunctionFor Mary
Ford Taunus inFunction true
Renault 205 inFunction false

post situation Peugeot 205 inFunctionFor Mary
Ford Taunus inFunction false
Peugeot 205 inFunction true

"Vinyl was replaced by the compact disc in the early eighties."

pre situation vinyl inFunction true
compact disc inFunction false

post situation compact disc inFunction true
vinyl inFunction false

"Amsterdam installed Mary as the new mayor."



pre situation Mary notHasFunction mayor
Mary inFunction false

post situation Mary hasFunction mayor
Mary inFunctionFor Amsterdam
Mary inFunction true

"The rebellion against the Lannisters."

pre situation Lannisters inFunction true
post situation Lannisters inFunction false*

*Note that, due to the lexical units associated to a FrameNet frame, the triggered 
assertions can be too strong.

-Selling subclassOf: FinancialTransaction
`’The subclass of FinancialTransaction where some entity changes of ownership
 in exchange for money.”

Class mappings:
closeMatch: fn:Commerce_sell
closeMatch: sumo:Selling

For the assertions and role mappings, see: FinancialTransaction.

EXAMPLES:

"In 2013, Ford sold 10.000 cars."

pre situation Ford hasInPossession 10.000 cars
post situation Ford notHasInPossession 10.000 cars

"The Catholic church auctioned off 20 churches to project developers."

pre situation Catholic church hasInPossession 20 churches
project developers notHasInPossession 20 churches

post situation Catholic church notHasInPossession 20 churches
project developers hasInPossession 20 churches

"Mary sold the plot of land to John for 10.000 dollar."

pre situation Mary hasInPossession the plot of land
John notHasInPossession the plot of land
Mary notHasInPossession 10.000 dollar
John hasInPossession 10.000 dollar

post situation Mary notHasInPossession the plot of land
John hasInPossession the plot of land
Mary hasInPossession 10.000 dollar
John notHasInPossession 10.000 dollar

during situation the plot of land hasValue 10.000 dollar

-Separating subclassOf: InternalChange
“The subclass of InternalChange where some whole is split into parts.”

Class mappings:
closeMatch: fn:Becoming_separated
closeMatch: fn:Separating
closeMatch: sumo:Separating

Role mappings:



separating-theme_1: fn:Part_1, fn:Parts
separating-theme_2: fn:Part_2
separating-theme_3: fn:Whole

Assertions:
pre situation separating-theme_1 exist false

separating-theme_2 exist false
separating-theme_3 exist true

post situation separating-theme_1 exist true
separating-theme_2 exist true
separating-theme_3 exist false

EXAMPLES:

"The machine split the water into hydrogen and oxygen."

pre situation hydrogen and oxygen exist false
water exist true

post situation hydrogen and oxygen exist true
water exist false

"Mary divided the pile of cutlery into groups of six."

pre situation groups of six exist false
pile of cutlery exist true

post situation groups of six exist true
pile of cutlery exist false

"The auctioneer separated the hatchbacks from the saloons.*”

pre situation the hatchbacks exist false
the saloons exist false

post situation the hatchbacks exist true
the hatchbacks exist true

*Note that separating-theme_3 (the whole collection of cars) remains 
implicit in this example.

"The partition of Germany in 1945."

pre situation Germany exist true
post situation Germany exist false

-StartingAnActivity subclassOf: IntentionalEvent
“The subclass of IntentionalProcess where someone intentionally starts an activity."

Class mappings:
closeMatch: fn:Activity_start

Role mappings:
activity: fn:Activity
activity-agent: fn:Agent

Assertions:
pre situation activity exist false
post situation activity exist true

activity-agent involvedIn activity

"Ford started the production of the Taunus in 1979."



pre situation production of the Taunus exist false
post situation production of the Taunus exist true

Ford involvedIn production of the Taunus

"The government began protecting the peat bogs in Ost-Friesland."

pre situation protecting the peat bogs in Ost-Friesland exist false
post situation protecting the peat bogs in Ost-Friesland exist true

the government involvedIn   protecting the peat bogs in Ost-Friesland.

-StaticEvent  StaticEvent is the top node of the static event class hierarchy. 
“A StaticEvent is an entity which is associated with a period of time
where a set of propositions is true.”

Class mappings:
closeMatch: fn:State

No assertions are defined for this class.

-Stealing subclassOf: Taking
“The subclass of Taking where a person takes something without permission of the owner.”

Class mappings:
closeMatch: fn:Theft
closeMatch: sumo:Stealing

For the assertions and class mappings, see: ChangeOfPossession.

EXAMPLES:

"John shoplifted a sweater from the department store."

pre situation department store hasInPossession sweater
John notHasInPossession sweater

post situation department store notHasInPossession sweater
John hasInPossession sweater

"Marie stole a sweater from John."

pre situation John hasInPossession a sweater
Marie notHasInPossession a sweater

post situation John notHasInPossession a sweater
Marie hasInPossession a sweater

"Massive theft of documents from the Stasi archives."

pre situation Stasi archives hasInPossession documents
post situation Stasi archives notHasInPossession documents

-StoppingAnActivity subclassOf:IntentionalEvent
"The subclass of IntentionalProcess where some agent intentionally stops an activity."

Class mappings:
closeMatch: fn:Activity_stop

Role mappings:
activity: fn:Activity
activity-agent: fn:Agent

Assertions:



pre situation activity exist true
activity-agent involvedIn activity

post-situation activity exist false
activity-agent notInvolvedIn activity

"Ford terminated the negotiations with Peugeot."

pre situation negotiations with Peugeot exist true
Ford   involvedIn negotiations with Peugeot

post situation negotiations with Peugeot exist false
Ford        notInvolvedIn negotiations with Peugeot

"John's treatment was discontinued."

pre situation John's treatment exist true
post situation John's treatment exist false

-Taking subclassOf: Getting
“The subclass of Getting where a person takes something without giving 
something in return.”

Class mappings:
closeMatch: fn:Taking
closeMatch: sumo:UnilateralGetting

For the assertions and role mappings, see: ChangeOfPossession

EXAMPLES:

"The police seized financial documents from the private equity fund."

pre situation the police  notHasInPossession financial documents
private equity fund  hasInPossession financial documents

post situation the police  hasInPossession financial documents
private equity fund  notHAsInPossession financial documents

"Mary took a beer from the refrigerator."

pre situation Mary notHasInPossession a beer
the refrigerator hasInPossession a beer

post situation Mary hasInPossession a beer
the refrigerator notHasInPossession a beer

-Translocation subclassOf:Motion
"The subclass of Motion where physical objects or animate beings change from location."

Class mappings:
closeMatch: fn:Self_motion
closeMatch: fn:Cotheme
closeMatch: fn:Traversing
closeMatch: fn:Use_vehicle
closeMatch: fn:Intentional_traversing
closeMatch: fn:Ride_vehicle
closeMatch: fn:Travel
closeMatch: fn:Operate_vehicle
closeMatch: fn:Cause_motion
closeMatch: sumo:Translocation



Role mappings:
translocation-theme: fn:Self_mover, fn: Theme, fn:Driver, fn:Traveler, fn:Vehicle, 

   fn:Escapee, fn:Cotheme, fn:Component, fn:Individuals.
translocation-source: fn:Source, fn: Undesirable_location
translocation-goal: fn:Goal, fn: Intended_goal, fn: Goal_area

Assertions:
pre situation: translocation-theme atPlace translocation-source

translocation-theme notAtPlace translocation-goal

post situation: translocation-theme atPlace translocation-goal
translocation-theme notAtPlace translocation-source

EXAMPLE:

"John drove from New York to Atlanta."

pre situation John atPlace New York
John notAtPlace Atlanta

post situation John atPlace Atlanta
John notAtPlace New York

-Transportation subclassOf:Transportation
“The subclass of Translocation where physical objects and animate beings together 
change from location and the physical object is not the means of translocation.”

Class mappings:
closeMatch: fn:Bringing
closeMatch: fn:Delivery
closeMatch: sumo:Transportation

For the assertions and role mappings, see: Translocation

EXAMPLES:

"Mary brought her classic car from the US to England."

pre situation her classic car atPlace US
her classic car notAtPlace England

post situation her classic car atPlace England
her classic car notAtPlace US

"John flew Mary to the nearest hospital."

pre situation Mary notAtPlace hospital
post situation Mary atPlace hospital

"Russian gas deliveries to Europe."

pre situation gas atPlace Russia
gas botAtPlace Russia

post situation gas notAtPlace Russia
gas atPlace Europe

"The postman delivered a letter to Mary's mailbox."

pre situation a letter notAtPlace Mary's mailbox
post situation a letter atPlace Mary's mailbox



"The postman delivered a letter to Mary.*”

pre situation -
post situation -

*Note that 'Mary' is a 'Beneficiary' according to FrameNet. The fn:Beneficiary is 
not mapped to ESO translocation-goal.

-Working subclassOf: StaticEvent
“Static event where someone is doing work. “

Class mappings:
closeMatch: fn:Working_a_post
closeMatch: fn:Work

Role mappings:
working-entity: fn:Agent

Assertions:
during situation working-entity works true

EXAMPLES:

"John works hard on a new book."

during situation John works true

"John and Mary manned the front desk."

during situation John and Mary works true


