
Knowledge store version 1
Deliverable D6.2.1

Version Ready for Internal Review

Authors: Marco Amadori1, Roldano Cattoni1, Francesco Corcoglioniti1, Bernardo
Magnini1, Michele Mostarda1, Marco Rospocher1, Luciano Serafini1

Affiliation: (1) FBK

Building structured event indexes of large volumes of financial and economic
data for decision making

ICT 316404

Knowledge store version 1 2/58

Grant Agreement No. 316404
Project Acronym NEWSREADER
Project Full Title Building structured event indexes of

large volumes of financial and economic
data for decision making.

Funding Scheme FP7-ICT-2011-8
Project Website http://www.newsreader-project.eu/

Project Coordinator

Prof. dr. Piek T.J.M. Vossen
VU University Amsterdam
Tel. + 31 (0) 20 5986466
Fax. + 31 (0) 20 5986500
Email: piek.vossen@vu.nl

Document Number Deliverable D6.2.1
Status & Version Ready for Internal Review
Contractual Date of Delivery December 2013
Actual Date of Delivery December 18, 2013
Type Prototype
Security (distribution level) Public
Number of Pages 58
WP Contributing to the Deliverable WP6
WP Responsible FBK
EC Project Officer Susan Fraser
Authors: Marco Amadori1, Roldano Cattoni1, Francesco Corcoglioniti1, Bernardo
Magnini1, Michele Mostarda1, Marco Rospocher1, Luciano Serafini1

Keywords: knowledge store, unstructured content, mentions, entities
Abstract: Despite the widespread diffusion of structured data sources and the
public acclaim of the Linked Open Data initiative, a preponderant amount of in-
formation remains nowadays available only in unstructured form, both on the Web
and within organizations. While different in form, structured and unstructured con-
tents speak about the very same entities of the world, their properties and relations;
still, frameworks for their seamless integration are lacking. In this deliverable we
present the first implemented version of the NewsReader KnowledgeStore, a scalable,
fault-tolerant, and Semantic Web grounded storage system to jointly store, man-
age, retrieve, and semantically query, both structured and unstructured data. The
KnowledgeStore plays a central role in the NewsReader project: it stores all contents
that have to be processed and produced in order to extract knowledge from news,
and it provides a shared data space through which NewsReader components coop-
erate. A description of the tools and content with which the first version of the
KnowledgeStore was populated is also provided.

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 3/58

Table of Revisions

Version Date Description and reason By Affected
sections

0.1 25 November 2013 Draft of Deliverable Skeleton Francesco
Corcoglioniti, Marco
Rospocher

0.2 26-27 November
2013

Draft of Introduction Marco Rospocher 1

0.3 28-29 November
2013

Draft of Interfaces Marco Rospocher 3

0.4 02 December 2013 Draft of Data Model Francesco
Corcoglioniti

2

0.5 09 December 2013 Draft of Hbase and Hadoop in
Architecture

Roldano Cattoni 4.1.1

0.6 10 December 2013 Draft of Architecture Francesco
Corcoglioniti

4

0.7 11 December 2013 Revision of Data Model and
Architecture

Francesco
Corcoglioniti

2, 4

0.8 12 December 2013 Draft of RDF Populator Francesco
Corcoglioniti

5.2

0.9 13 December 2013 Draft of Executive Summary Marco Rospocher

1.0 13 December 2013 Draft of Background
Knowledge

Francesco
Corcoglioniti

5.3

1.1 16 December 2013 Revision of Hbase and Hadoop
in Architecture

Roldano Cattoni 4.1.1

1.2 17 December 2013 Revision of whole Architecture Francesco
Corcoglioniti

4

1.3 17 December 2013 Added Conclusions Marco Rospocher 6

1.4 18 December 2013 Revision of Front-End in
Architecture

Francesco
Corcoglioniti

4.1.3

1.5 18 December 2013 Revision of whole document Francesco
Corcoglioniti, Marco
Rospocher

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 4/58

Executive Summary

This deliverable documents the first implementation cycle of the NewsReader Knowledge-
Store, an infrastructure for storing and reasoning about the events extracted from news,
developed within the European FP7-ICT-316404 “Building structured event indexes of
large volumes of financial and economic data for decision making (NewsReader)” project.
The contributions presented are the results of the activities performed in Task T6.1 (Knowl-
edgeStore internal structure) and Task 6.2 (KnowledgeStore implementation and filling) of
Work Package WP6 (KnowledgeStore).

First, we introduce the idea behind the KnowledgeStore, motivating the organization of
its content and presenting some examples of applications that can exploit such framework.
We also highlight the key role of the KnowledgeStore in achieving the challenging goals of
the NewsReader project.

We detail the KnowledgeStore, starting with a description of how unstructured (e.g.,
news documents) and structured (e.g., Semantic Web resources) are stored, together and
in an integrated manner, within the same repository (the KnowledgeStore data model).
We then discuss how external modules may interact with the KnowledgeStore (the Knowl-
edgeStore interfaces), presenting the abstract definition and rationale of the operations
through which these modules can access and manipulate the content stored in the Knowl-
edgeStore. We also detail the internal component organization of the KnowledgeStore (the
KnowledgeStore architecture), discussing the technological and implementation choices we
made. Then, we present the KnowledgeStore populators, that is those tools that process an-
notated news documents and structured resources to fill the KnowledgeStore with content:
in particular, in this first version, we filled the KnowledgeStore with selected structured
resources coming from DBpedia.org, one of core repository of the Linked Data cloud.

Part of the contributions here described was presented at the 7th IEEE International
Conference on Semantic Computing (ICSC2013) [Corcoglioniti et al., 2013].

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 5/58

Contents

Table of Revisions 3

1 Introduction 7
1.1 The KnowledgeStore Vision . 7
1.2 Role of the KnowledgeStore in NewsReader 10

2 The KnowledgeStore Data Model 14
2.1 Data model design . 14
2.2 Data model configuration for NewsReader 18

3 The KnowledgeStore Interfaces 22
3.1 API Design Criteria . 22
3.2 API Operations and Endpoints . 24

3.2.1 CRUD Endpoint . 25
3.2.2 SPARQL Endpoint . 27

4 The KnowledgeStore Architecture and Implementation 30
4.1 Architecture . 30

4.1.1 HBase & Hadoop . 32
4.1.2 Virtuoso . 33
4.1.3 Frontend Server . 36

4.2 Implementation . 36
4.2.1 Software development . 37
4.2.2 Deployment environments . 40

5 The KnowledgeStore Population 41
5.1 NAF populator . 41
5.2 RDF populator . 43
5.3 Acquisition of LOD background knowledge 45

5.3.1 Data selection . 45
5.3.2 Data processing . 49
5.3.3 Result statistics . 51

6 Conclusions and Future Work 55

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 6/58

List of Figures

1 KnowledgeStore Content. 9
2 The role of the KnowledgeStore in NewsReader. 12
3 KnowledgeStore data model. 15
4 From RDF statements to axioms. 16
5 Representation of axioms with context and metadata using named graphs. 17
6 Example of axiom representation using named graphs. 17
7 NewsReader data model. 19
8 Invocation of CRUD retrieve operation through the HTTP ReST endpoint. 27
9 Using the KnowledgeStore client within a Java application. 28
10 SPARQL endpoint example. 28
11 KnowledgeStore architecture. 31
12 Axiom representation in HBase and in the Virtuoso Triple Store. 34
13 Examples of inference rules . 35
14 Examples of generated reports on the KnowledgeStore web site. 37
15 Modular code organization. 39
16 NAF population. 42
17 Example of SPARQL query with (a) and without (b) smushing and inference. 49
18 Examples of browsing the statistics ontology in Protégé. 54

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 7/58

1 Introduction

This prototype deliverable presents the implementation of the first version of the Knowl-
edgeStore [Corcoglioniti et al., 2013], the infrastructure used in NewsReader to store, re-
trieve, and reason about the knowledge extracted from financial and economical news.

First, we present the revised version of the KnowledgeStore design, initially described in
Deliverable D6.1: KnowledgeStore Design. This revision updates the KnowledgeStore design
in light of the latest outcomes of some activities tightly related to the KnowledgeStore, and
in particular the definition of the annotation format (D3.1: Annotation module), the NLP
pipeline (D4.2.1: Event Detection – version 1), the definition of NAF1 and the design of
the whole system architecture (D2.1: System Design - draft). To favour the readability,
we comprehensively describe the up-to-date version of the KnowledgeStore Data Model
(Section 2), Interfaces (Section 3), and Architecture (Section 4), highlighting the main
changes performed since D6.1.

We document the actual implementation of the first version of the KnowledgeStore (Sec-
tion 4.2), and introduce the KnowledgeStore populators (Section 5), the tools supporting the
filling of the KnowledgeStore with documents annotated according to NAF, and structured
resources available in RDF format.

Some further content, to be considered as integral part of this deliverable, is also avail-
able as on-line resource. In particular,

• the KnowledgeStore site, which includes code, documentation (e.g., JavaDoc of the
KnowledgeStore APIs), additional resources (e.g., selected DBpedia dataset), avail-
able at http://newsreader.fbk.eu/knowledgestore;

• the KnowledgeStore Core Data Model and NewsReader Data Model ontologies, avail-
able at http://dkm.fbk.eu/ontologies/knowledgestore and http://dkm.fbk.

eu/ontologies/newsreader respectively.

The current deliverable will serve as basis for the documentation of all the next devel-
opment cycles of the KnowledgeStore, and will be update and integrated to describe the
reasoning service built on top of it (M24, Deliverable D6.2.2) and the final scalable version
(M33, Deliverable D6.2.3).

Before going into the technical details of the KnowledgeStore, let us recall the main prin-
ciples driving its development, and the let us contextualize its role within the NewsReader
project.

1.1 The KnowledgeStore Vision

The rate of growth of digital data and information is nowadays continuously increasing.
While the recent advances in Semantic Web Technologies (e.g., the Linked Data2 initiative),

1Newsreader Annotation Format
2http://linkeddata.org

NewsReader: ICT-316404 December 18, 2013

http://newsreader.fbk.eu/knowledgestore
http://dkm.fbk.eu/ontologies/knowledgestore
http://dkm.fbk.eu/ontologies/newsreader
http://dkm.fbk.eu/ontologies/newsreader
http://linkeddata.org

Knowledge store version 1 8/58

have favoured the release of large amount of data and information in structured machine-
processable form (e.g., RDF dataset repositories), a huge amount of content is still available
and distributed through websites, company internal Content Management System (CMS)
and repositories, in an unstructured form, for instance as textual document, web pages,
and multimedia material (e.g., photos, diagrams, videos). Indeed, as observed in [Gantz
and Reinsel, 2011], unstructured data accounts for more than 90% of the digital universe.

Although bearing a clear dichotomy for what concern their form, the content of struc-
tured and unstructured resources is far from being separated: they both speak about
entities of the world (e.g., persons, organizations, locations, events), their properties, and
relations among them. Indeed, coinciding, contradictory, and complementary facts about
these entities could be available in structured form, unstructured form, or both. There-
fore, partially focusing on the content distributed in only one of these two forms may not
be appropriate, as complete knowledge is a requirement for many applications, especially
in situations where users have to make (potentially critical) decisions. Moreover, some
applications inherently require considering both types of content: an example is question
answering [Ferrucci et al., 2010], where often a user query can only be answered by com-
bining information in structured and unstructured sources.

Despite the last decades achievements in natural language and multimedia processing,
now supporting large scale extraction of knowledge about entities of the world from un-
structured digital material, frameworks enabling the seamless integration and linking of
knowledge coming both from structured and unstructured content are still lacking.

This document describes the implementation of the first version of the KnowledgeStore,
a framework that contributes to bridge the unstructured and structured worlds, enabling
to jointly store, manage, retrieve, and semantically query, both typologies of contents.
Figure 1 shows schematically how the KnowledgeStore manages these contents in its three
representation layers. On the one hand (and similarly to a file system) the resource layer
stores unstructured content in the form of resources (e.g., news articles, multimedia files),
each having a textual or binary representation and some descriptive metadata. Information
stored in this level is typically noisy, ambiguous, and redundant, with the same piece of
information potentially represented in different ways in multiple resources. On the other
hand, the entity layer is the home of structured content, that, based on Knowledge Repre-
sentation and Semantic Web best practices, consists of axioms (a set of 〈subject, predicate,
object〉 triples), which describe the entities of the world (e.g., persons, locations, events),
and for which additional metadata is kept to track their provenance and to denote the for-
mal contexts where they hold (e.g., in terms of time, space, point of view). Differently from
the resource layer, the entity layer aims at providing a formal and concise representation of
the world, abstracting from the many ways it can be encoded in natural language or in mul-
timedia, and thus allowing the use of automated reasoning to derive new statements from
asserted ones [De Bruijn and Heymans, 2007]. Between the aforementioned two layers is
the mention layer. It indexes mentions, i.e., snippets of resources (e.g., some characters in
a text document, some pixels in an image) that denote something of interest, such as a an
entity or a axiom of the entity layer. Mentions can be automatically extracted by natural
language and multimedia processing tools, that can enrich them with additional attributes

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 9/58

Resource Mention

has mention

Entity Axiom

Entity Mention

Relation Mention

source

target

refers to

described by

expressed by

. . .

Context

holds in

Resource Layer

dbpedia:United_Nations rdf:type yago:PoliticalSystems

dbpedia:United_Nations rdfs:label "United Nations"@en

dbpedia:United_Nations foaf:homepage <http://www.un.org/>

dbpedia:United_Nations

Entity Layer Mention Layer

Indonesia Hit By Earthquake

A United Nations assessment team
was dispatched to the province after
two quakes, measuring 7.6 and 7.4,
struck west of Manokwari Jan. 4. At
least five people were killed, 250
others injured and more than 800
homes destroyed by those temblors,
according to the UN.

Figure 1: KnowledgeStore Content.

about how they denote their referent (e.g., with which name, qualifiers, “sentiment”). Far
from being simple pointers, mentions present both unstructured and structured facets (re-
spectively snippet and attributes) not available in the resource and entity layers alone, and
are thus a valuable source of information on their own.

Thanks to the explicit representation and alignment of information at different levels,
from unstructured to structured knowledge, the KnowledgeStore enables the development
of enhanced applications, and favour the design and empirical investigation of several
information processing tasks otherwise difficult to experiment with. To name a few:

• Decision support. Effective decision making support could be provided by exploit-
ing the possibility to semantically query the content of the KnowledgeStore with re-
quests that combine structured and unstructured content (a.k.a. mixed queries), like
e.g., retrieve all the documents mentioning that person Barack Obama participated
to a sport event—fulfilling this request involves: (i) to reason in the structured part
about which events “Barack Obama” participated that are of type “sport event”, and
identify the corresponding participation statements; (ii) to exploit the links to the
mentions those statements have been extracted from; and (iii) to exploit the linking
between those mentions and the resources containing them [Hoffart et al., 2011].

• Coreference resolution. The KnowledgeStore favours the implementation and evalua-
tion of tools which exploit available structured knowledge to improve the performance
of coreference resolution tasks (i.e., identifying that two mentions refer to the same
entity of the world), as shown in [Bryl et al., 2010], especially in cross-document /
cross-resource settings.

• Ontology population. Finally, the joint storage of extracted knowledge, the resources

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 10/58

it derives from, and extraction metadata provides an ideal scenario for developing,
training, and evaluating ontology population [Buitelaar and Cimiano, 2008] tech-
niques. In particular, the KnowledgeStore data model favours the exploration of a
number of computational strategies for knowledge fusion, i.e., the merging of possibly
contradicting information extracted from different sources, and knowledge crystalliza-
tion, i.e., the process through which information from a stream of multimedia docu-
ments is automatically extracted, compared, and finally integrated into background
knowledge, taking into consideration how many times a piece of information has been
extracted, where it has been extracted from and how well it fits / is consistent with
pre-existing background knowledge.

Given the KnowledgeStore ambition to cope with a huge quantity of data and resources
(potentially in the range of billions of documents), as required by today / next future
applications, the development of the KnowledgeStore vision is necessarily driven by scala-
bility aspects: performances in storing, accessing, and querying the KnowledgeStore have
to gracefully scale with respect to the size of managed content. For this reason the imple-
mentation of the KnowledgeStore is based on technologies compliant with the deployment
in distributed hardware settings, like clusters and cloud computing.

The idea behind the KnowledgeStore was preliminary investigated in [Cattoni et al.,
2012] and tested in the scope of the LiveMemories project3. However, we highly revised the
design of the previous version, introducing significant enhancements: this first new version
of the KnowledgeStore supports (i) the storing of and reasoning on events and related
information, such as event relations (the previous version was limited to mentions and
entities referring to persons, organizations, geo-political entities, and locations), (ii) scaling
on a significantly larger collection of resources, and (iii) a semantic query mechanism over
its content, to favour the development of reasoning services on top of it (no reasoning
services was previously offered).

1.2 Role of the KnowledgeStore in NewsReader

The goal of the NewsReader Project4 is to process daily economical and financial news
in order to extract events (i.e., what happened to whom, when and where – e.g., “The
Black Tuesday, on 24th of October 1929, when United States stock market lost 11% of its
value”), and to organize these events in coherent narrative stories, combining new events
with past events and background information. These stories are then offered to professional
decision-makers, that by means of visual interfaces and interaction mechanisms will be
able to explore them, exploiting their explanatory power and their systematic structural
implications, to make well-informed decisions. Achieving these challenging goals requires:

• to process document resources, detecting mentions of events, event participants (e.g.,
persons, organizations), locations, time expressions, and so on;

3http://www.livememories.org/
4http://www.newsreader-project.eu/

NewsReader: ICT-316404 December 18, 2013

http://www.livememories.org/
http://www.newsreader-project.eu/

Knowledge store version 1 11/58

• to link extracted mentions with entities, either previously extracted or available in
some structured domain source, and coreferring mentions of the same entity;
• to complete entity descriptions by complementing extracted mention information

with available structured knowledge (e.g., DBPedia5, corporate databases);
• to interrelate entities (events and their participants, in particular) to support the

construction of narrative stories;
• to reason over events to check consistency, completeness, factuality and relevance;
• to store all this huge quantity of information (on resources, mentions, entities) in a

scalable way, enabling efficient retrieval and intelligent queries;
• to effectively offer narrative stories to decision makers.

A framework like the KnowledgeStore can effectively contribute to address such kind of
requirements6.

First, the KnowledgeStore allows to store in its three interconnected layers all the ty-
pologies of content that have to be processed and produced when dealing with unstructured
content and structured knowledge:

• the resource layer stores the unstructured financial news and their annotations;

• the mention layer identifies fragments of news denoting entities (e.g., a take-over
event), relation between entity mentions (e.g., event participation), numerical quan-
tities (e.g., a share price);

• the entity layer 7 stores the structured descriptions of those entities extracted from
resources and merged with available structured knowledge (e.g., Linked Data sources,
corporate databases).

Second, as shown in Figure 2, the KnowledgeStore acts as a shared data space supporting
the interaction of the several NewsReader modules and tools envisaged according to the
aforementioned requirements: modules retrieve their input data from the KnowledgeStore,
and store the results of their processing back in it, so that they can be picked up by other
modules. Modules can be roughly classified in five categories:

• News and RDF populators. These modules, developed as part of WP6 activities,
enable the bulk loading of structured and unstructured contents in the Knowledge-
Store. The former processes a collection of NAF annotated news documents injecting
content in all three layers of the KnowledgeStore, while the latter augments the entity
layer with Semantic Web compliant resources available in RDF repositories.

5http://dbpedia.org/
6Note that such requirements, though arisen from the specific application scenario considered within

the NewsReader project, are quite typical in many application contexts where enhanced applications (e.g.,
decision support systems, information retrieval systems, semantic search engines, query answering appli-
cations) have to deal with both unstructured content and structured knowledge.

7In the current status of affairs, an ad-hoc layer to explicitly represent narrative stories is not foreseen.
Narrative stories will be represented within the entity layer, by means of entities and statements.

NewsReader: ICT-316404 December 18, 2013

http://dbpedia.org/

Knowledge store version 1 12/58

Decision Support
Tool Suite (DSTS)

WP7

read
news, mentions

& entity data

RDF
populator

RDF
background
knowledge

WP6

write
entities

news
populator

News

WP6

write
news

cross-document
NLP pipeline(s)

WP5

read & write
mentions &
entity data

knowledge
crystallization

WP6

read mention &
entity data; write

entity data

Knowledge
Store (KS)

Resource

Layer
Mention

Layer

Entity

Layer

WP6

single-document
NLP pipeline(s)

WP4

write NAF files, extract
mentions and (maybe)

entities

Figure 2: The role of the KnowledgeStore in NewsReader.

• single-document NLP pipelines. These pipelines, as part of WP4 activities, work at
the resource layer, and take care of processing a text document enriching it with
linguistic annotations related to tokenization, Part-Of-Speech (POS) tagging, Word
Sense Disambiguation (WSD), named entity and event recognition, semantic role
labelling, and so on.

• cross-document NLP pipelines. These modules, as part of WP5 activities, work at the
mention and entity layers, exploiting the work of the NLP pipelines to instantiate,
link, or enrich entities performing tasks such as cross-document coreference.

• knowledge crystallization tools. These modules, as part of WP6 activities, will com-
pare and merge the information extracted by the WP4 and WP5 pipelines, finally
integrating it into the background consolidated knowledge.

• Decision Support Tool Suite (DSTS). Finally, as part of WP7 activities, the decision
support tool suite queries the KnowledgeStore— mainly the entity layer (although
queries may also requires to retrieve documents and mentions)—to obtain the infor-
mation about events and narrative stories to be shown to users.

The KnowledgeStore provides to external modules different typologies of access to its
content: create, read, update, delete (CRUD) operations on resource/mention/entity/s-
tatement, and retrieve/query mechanisms. Due to the goals of the NewsReader project,
the development of the KnowledgeStore implementation focuses on providing efficient re-
trieve/query mechanisms; still, a basic implementation of all the CRUD operations is
provided, such that external modules have full access (and control) on the content of the
KnowledgeStore8.

8Note that some operations on a single element of the KnowledgeStore content may also impact on other
elements (e.g., deletion of a news in the resource layer affects the mentions associated to that news, which

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 13/58

The NewsReader technologies will be assessed with economic and financial news and
on events relevant for political and financial decision-makers. Concerning the data and
information volume aspect, this is a quite significant domain. Roughly 25% of the news
deals with finance and economy, and a large international information broker such as the
project partner LexisNexis, typically handles about 2 million news each day, cumulating
to an impressive 25 billion documents archive spanning several decades. As suggested by
these numbers, the project context sets an ideal test bed to assess the scalability of the
KnowledgeStore.

may affect entities associated to those mentions). The correct handling of these situations is not clear,
and has to be investigated. Therefore the KnowledgeStore does not handle them, although it offers to each
module the basic operations to implement the more appropriate strategy to cope with them.

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 14/58

2 The KnowledgeStore Data Model

Changes wrt the KnowledgeStore Data Model described Deliverable D6.1

• entities described by axioms (instead of plain RDF statements) to support
appropriate TBox storing; each axiom models a contextualized, annotated
logical axiom encoded by one or more RDF statements (Section 2.1);

• alignment of data model concepts to Dolce+DNS Ultralite ontology and
partial renaming for consistency with Dolce terminology (Section 2.1);

• adaptation of data model to revised WP3 annotation guidelines latest WP2
specification of the NewsReader Annotation Format (NAF) (Section 2.2).

The data model defines what information can be stored in the KnowledgeStore, in
accordance with the annotation guidelines of WP39, the event modelling activity of WP5
and the NewsReader Annotation Format (NAF) of WP210. It serves both as a basis for the
design of the KnowledgeStore, and as a shared model that permits WP4 and WP5 linguistic
processors and the decision support tool suite of WP7 to cooperate.

Flexibility is a key requirement of the data model, given its role. This is addressed
through the design of a minimalist, configurable data model, centred around the key con-
cepts of resource, mention and entity described by axioms within a context. The data
model is then configured for use in NewsReader (but also other scenarios) through the
controlled addition of attributes, relations, and resource and mention sub-types.

The remainder of this section provides an high-level description of the KnowledgeStore
data model (Section 2.1) and its configuration for NewsReader (Section 2.2), while their
specifications are available online on the KnowledgeStore documentation site. The presen-
tation is at a conceptual level with no implication on the physical organization of data.

2.1 Data model design

The KnowledgeStore data model is depicted in the UML class diagram of Figure 3. The
model is organized in the three resource, mention and entity layers and consists of a fixed
part and a configurable one, as highlighted in the figure. Both parts are specified as
OWL 2 ontologies [Motik et al., 2009] (available online) containing the TBox definitions
and restrictions for each model element. The first ontology for the fixed part is embodied in
the KnowledgeStore implementation, while the the latter is supplied at configuration time
and exploited to fine tune the system and, in perspective, to enable additional services
such as data validation that might be added in next releases of the KnowledgeStore. The
grounding of the data model in OWL 2 ontologies allow to encode both the model and its

9The revised guidelines will be described in Deliverable D3.3.1: Annotated Data.
10NAF (Newsreader Annotation Format) is the format adopted in the project to augment resources

with structured information extracted by linguistic processors (tokenization, POS tagging, Semantic Role
labelling, and much more). NAF will be described in Deliverable D2.1: System Design.

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 15/58

AttrType2

attributes

AttrType3

attributes

SubEnt3

attributes...

SubEnt2

attributes...

SubRes3

attributes

Resource

uri: URI
storedAs:
 Representation
...attributes...

Mention

uri: URI
...attributes...

Entity

uri: URI

Axiom

uri: URI
encodedBy:
 rdf:Statement[1..*]
...attributes...

SubRes2

attributes

SubResource_i

...attributes...

relatedResource_i

SubMention_i

...attributes...

mentionOf
1

0..*
refersTo
0..1

0..*

AttributeType_i

...attributes...

expressedBy

0..* 0..*

relatedMention_i

Representation

nfo:fileName: string
nfo:fileSize: int
nfo:fileCreated: date
nie:mimeType: string

Default namespace:

 <http://dkm.fbk.eu/ontologies/knowledgestore#>

Other namespaces:

 nie: <http://www.semanticdesktop.org/ontologies/2007/01/19/nie#> Nepomuk NIE Ontology

 nfo: <http://www.semanticdesktop.org/ontologies/2007/03/22/nfo#> Nepomuk File Ontology

Context

uri: URI
...attributes...

holdsIn
1

describes

0..*

1..*

describedBy

referredBy

expresseshasMention

configurable part

Figure 3: KnowledgeStore data model.

instance data in RDF [Beckett, 2004], which in turn enables interoperability with Semantic
Web applications and technologies.

Fixed part This part defines the core abstraction of the model. It is formalized in
a KnowledgeStore OWL 2 ontology11 by reusing terms from external vocabularies and
providing alignments to concepts in the Dolce+DNS Ultralite upper ontology12. It includes:

• The Resource, Mention, Entity core classes. Their instances are described using the
types, attributes and relations defined in the configurable part of the model; they are
identified by externally-assigned uris, set at creation time and then immutable.

• The core relations among these three classes: a Resource has Mentions, and each
Mention may refersTo an Entity.

• The files storing resource representations and their metadata managed by the system
(storedAs attribute and Representation class).

• The Axiom and Context abstraction used to provide open descriptions of entities. An
Axiom is a logical formula (e.g., that “Barack Obama is president of USA”) that
is encoded with one or more RDF statements and that possibly holdsIn a specific
Context (e.g., the time period 2009-2016). Both axioms and contexts are identified
with URIs automatically assigned by the system based on the RDF statements and

11http://dkm.fbk.eu/ontologies/knowledgestore
12http://ontologydesignpatterns.org/wiki/Ontology:DOLCE%2BDnS_Ultralite

NewsReader: ICT-316404 December 18, 2013

http://dkm.fbk.eu/ontologies/knowledgestore
http://ontologydesignpatterns.org/wiki/Ontology:DOLCE%2BDnS_Ultralite

Knowledge store version 1 16/58

Entity

uri: URI

Statement

predicate: URI
...attributes...

refersTo
0..1

object
1

subject

1

AttributeStatement

value: literal

TypeStatement

type: URI

RelationStatement

efault namespace:

Context

uri: URI
...attributes...

context1

D6.1 DESIGN

AttrType2

attributes

AttrType3

attributes

Entity

uri: URI

Axiom

uri: URI
encodedBy:
 rdf:Statement[1..*]
...attributes...

refersTo
0..1

AttributeType_i

...attributes...

0..*

Context

uri: URI
...attributes...

holdsIn
1

describes

0..*

1..*

describedBy

redBy

expresses

D6.2.1 as before

as before

changed

Figure 4: From RDF statements to axioms.

context of the former and the contextual attributes of the latter (which are defined
in the configurable part).

• The relations describes and expressedBy linking an axiom, respectively, to the entities
it describes and the mention it has been extracted from, if any; the latter informa-
tion is relevant both for external users (e.g., decision makers) and for debugging an
information extraction pipeline built on top of the KnowledgeStore.

Being embodied in the implementation, the fixed part of the model is kept as small as
possible in order not to sacrifice flexibility. Therefore, relevant information such as resource
metadata, contextual dimensions, mention types and linguistic attributes are not defined
in this part, due to the fact that a stable, exhaustive and cross-domain characterization
of them cannot be drawn; this information can however be added to the configurable part
and tuned to the representation needs of a particular scenario (such as NewsReader).

The representation of axioms in place of plain RDF statements represents the major
change from the data model described in Deliverable D6.1 (other changes are the align-
ment of some concepts to Dolce and their renaming to make them more consistent with
Dolce terminology). The design of D6.1 directly associated context and metadata to RDF
statements, under the assumption that each RDF statement was a logical axiom. While
this assumption holds for ABox assertions, we realized that data in the KnowledgeStore
may also comprise complex TBox axioms whose encoding requires multiple RDF state-
ments (e.g., an OWL class restriction). Associating context and metadata to each of those
statement is conceptually wrong, inefficient and a potential source of problems (in case
different statements of the same axiom are associated to different context or metadata).
This motivated a revision of the model, adding Axioms as first class citizens; the change
from D6.1 statements to D6.2.1 axioms is specifically illustrated in Figure 4.

While axioms are just bunches of triples that can be encoded with plain RDF, axiom
metadata and contextual information are more complex to represent in RDF; still, their

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 17/58

@prefix ckr: <http://dkm.fbk.eu/ckr/meta#> .

<module_uri> { ... axiom triples ... }

ckr:global {

 <module_uri> <metadata_property_1> <metadata_value_1> ; ... ;
 <metadata_property_N> <metadata_value_N> .

 <context_uri> a ckr:Context ;
 ckr:hasModule <module_uri> ;
 <contextual_dimension_1> <contextual_value_1> ; ... ;
 <contextual_dimension_M> <contextual_value_M> ;
}

Figure 5: Representation of axioms with context and metadata using named graphs.

ckr, ks, nwr, sem, dbo, ex, dbpedia, dbo, xsd prefix definitions omitted

ex:mod01 { dbpedia:Barack_Obama dbo:birthPlace dbpedia:Honolulu } # the axiom

ckr:global {

 ex:mod01 nwr:crystallized "true"^^xsd:boolean ;
 nwr:confidence 1.0 ;
 nwr:source dbpedia:DBPedia ; # comes from DBPedia
 ks:expressedBy ex:mention15 , ex:mention127 . # but also extracted from
 # two mentions
 ex:ctx01 a ckr:Context ;
 ckr:hasModule ex:mod01 ;
 sem:hasTimeValidity ex:any-time ; # open interval, definition omitted
 sem:hasPointOfView ex:common-pov . # express common POV without particular
 # authority, definition omitted
}

Figure 6: Example of axiom representation using named graphs.

RDF representation is a requirement for enabling import and export of RDF entity data
and thus making the KnowledgeStore compatible with existing RDF datasets. We address
this issue using named graphs [Carroll et al., 2005], an extension of RDF supported by
the majority of tools and by several RDF syntaxes, and following and extending the CKR
approach [Bozzato and Serafini, 2013]. Using named graphs, an axiom together with its
context and metadata can be represented as shown in Figure 5: the triples encoding the
axiom are stored in a graph called module, which in turn is associated to the axiom meta-
data inside special ckr:global graph; contextual information is also encoded in ckr:global,
and attached to the axiom module via a ckr:hasModule triple. A concrete example of this
representation is shown in Figure 6. While seemingly verbose, this representation allows
putting multiple axioms in the same module in case they share the same context and meta-
data (this is often the case for axioms coming from the same source), thus limiting the
number of triples in ckr:global and making the associated overhead negligible.

Configurable part This part is specified at configuration time and is available both to
the KnowledgeStore and to its users, acting as the reference schema against which queries
and other data access operations can be formulated. It includes:

• The subclass hierarchy of Resource and Mention (entities excluded as described via
axioms); subclasses are not assumed to be disjoint.

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 18/58

• The additional attributes of Resource, Mention, Axiom, Context and their subclasses.
Context attributes define the contextual dimensions for a particular scenario and
are used by the system to generate the context URI. In case of objects belonging to
multiple subclasses, their description can make use of all their combined attributes.

• Additional relations among resources or among mentions (but not between the two).

• Enumerations and classes used as attribute types (similarly to ks:Representation).

• Restrictions on the domain and range of fixed-part relations (not shown in figure).

2.2 Data model configuration for NewsReader

The UML class diagram in Figure 7 shows the latest13 configuration of the data model
for NewsReader. With respect to the configuration described in Deliverable D6.1, the
version here described has been revised to take into consideration the revised annotation
guidelines of WP3 (to be described in Deliverable D3.3.1: Annotated Data) as well as
the latest NAF specification (to be described in Deliverable D2.1: System Design). The
OWL 2 ontology formally encoding the model is available online14. In the following, an
overview of the resulting model is presented, proceeding along the three resource, mention
and entity layers (note that URIs are hereafter abbreviated using qualified names and a
default NewsReader data model namespace).

Resource layer For each processed news, two resources are stored in the KnowledgeStore:
(i) a News resource for the news itself, containing its metadata and, optionally, its textual
content (depending on availability and copyright agreements); and (ii) a NAFDocument
resource storing the NAF document generated for the news. More in details:

• News are described using metadata from the Dublin Core Metadata Terms vocabulary
(dct:* attributes), augmented with NewsReader-specific attributes to keep track of
the external source document the news has been imported from (originalFileName,
originalFileFormat, originalPages, as defined in NAF).

• NAF documents are described with the subset of metadata from the NAF header
that is most relevant for selecting NAF documents in the KnowledgeStore. This
subset comprises the NAF version, the publicId of the NAF document (attribute
dct:identifier), the NAF layers available in the NAF document (e.g., text, terms, deps),
the NAF processors used (dct:creator) and the language of the processed document
(dct:language); complete metadata and all the produced linguistic annotations are
available in the stored XML content of the NAF document.

13As of 2013/12/15. Minor changes may occur to best accommodate the NAF output of WP4 pipeline.
14http://dkm.fbk.eu/ontologies/newsreader

NewsReader: ICT-316404 December 18, 2013

http://dkm.fbk.eu/ontologies/newsreader

Knowledge store version 1 19/58

SyntacticType: syntactic_type_nam, syntactic_type_nom,

 syntactic_type_pro, syntactic_type_ptv, syntactic_type_pre,

 syntactic_type_hls, syntactic_type_conj, syntactic_type_app,

 syntactic_type_arc

EntityType: entity_type_per, entity_type_loc, entity_type_org,

 entity_type_pro, entity_type_fin, entity_type_mix

Tense: tense_future, tense_past, tense_present,

 tense_infinitive, tense_prespart, tense_pastpart, tense_none

Aspect: aspect_progressive, aspect_perfective,

 aspect_perfective_progressive, aspect_none

NAFLayer: layer_raw, layer_text, layer_terms, layer_deps,

 layer_chunks, layer_entities, layer_coreferences, layer_srl,

 layer_constituency, layer_time_expressions, layer_factuality

TLinkType: tlink_before, tlink_after, tlink_includes, tlink_measure,

 tlink_is_included, tlink_simultaneous, tlink_iafter, tlink_ibefore,

 tlink_begins, tlink_ends, tlink_begun_by, tlink_ended_by

ks:Resource

uri: URI
ks:storedAs:
 ks:Representation
rdfs:comment: string

ks:Mention

uri: URI
nif:beginIndex: int
nif:endIndex: int
nif:anchorOf: string
rdfs:comment: string

TimeMention

value: string
timeType: TIMEX3Type
functionInDocument:
 FunctionInDocument
quant: string
freq: string
mod: TIMEX3Modifier
temporalFunction: bool

EventMention

eventClass:
 EventClass
pred: string
certainty: Certainty
factuality: Factuality
factualityConfidence:
 float
pos: PartOfSpeech
tense: Tense
aspect: Aspect
polarity: Polarity
modality: string
framenetRef: URI
propbankRef: URI
verbnetRef: URI
nombankRef: URI

ks:containedIn1
ks:Entity

uri: URI

ks:Axiom

uri: URI
ks:encodedBy:
 rdf:Statement[1..*]
crystallized: bool
dc:source: URI
confidence: float
rdfs:comment: string

ks:describes
1..*

0..*

NAFDocument

version: string
dct:identifier: string
layer: NAFLayer[1..*]
dct:creator:
 NAFProcessor[1..*]
dct:language:
 dct:LinguisticSystem

annotationOf

1 RelationMention

EntityMention

localCorefID: string

Participation

thematicRole: string
framenetRef: URI
propbankRef: URI
verbnetRef: URI
nombankRef: URI

CLink

TLink

relType: TLinkType

News

dct:title: string
dct:publisher: dct:Agent
dct:creator: dct:Agent
dct:created: date
dct:spatial: dct:Location
dct:temporal:
 time:Interval
dct:subject: URI
dct:rights:
 dct:RightsStatement
dct:rightsHolder:
 dct:Agent
dct:language:
 dct:LinguisticSystem
originalFileName: string
originalFileFormat: string
originalPages: int

source1

target
1

ks:expressedBy 0..* 0..*ks:refersTo

0..*

0..1

ObjectMention

syntacticHead: string
syntacticType: SyntacticType
entityType: EntityType
entityClass: EntityClass

TimeOrEventMention

SLink

ValueMention

valueType: ValueType

target 1

source 1

source 1

target 1

source
1

target 1

ks:Representation

nie:mimeType: string
nfo:fileName: string
nfo:fileSize: int
nfo:fileCreated: date

ks:Context

uri: URI
sem:hasPointOfView:
 sem:PointOfView
sem:hasTimeValidity:
 time:Interval

ks:holdsIn1

SignalMention

signal0..1

csignal0..1

ks:describedBy

ks:referredBy

ks:expresses

GLink source 1

target 1

sem:PointOfView

sem:accordingTo:
 rsem:Authority
sem:hasPointOfViewTime:
 time:Interval

CSignalMention

anchorTime

beginPoint

endPoint

NAFProcessor

dct:title: string
version: string

valueFromFunction

nwr: <http://dkm.fbk.eu/ontologies/newsreader#> (default, omitted)

ks: <http://dkm.fbk.eu/ontologies/knowledgestore#>

dct: <http://purl.org/dc/terms/>

nie: <http://www.semanticdesktop.org/ontologies/2007/01/19/nie#>

nfo: <http://www.semanticdesktop.org/ontologies/2007/03/22/nfo#>

nif: <http://nlp2rdf.lod2.eu/schema/string/>

sem: <http://semanticweb.cs.vu.nl/2009/11/sem/>

time: <http://www.w3.org/2006/time#>

Unless specified, attributes and

relations have cardinality 0..1.

- primitive XMLSchema types

- external entities referenced by URI:

 dct:Agent, dct:RightsStatement,

 dct:Location, dct:LinguisticSystem

- auxiliary classes with their attributes:

 NAFProcessor, ks:Representation,

 sem:PointOfView, time:Interval

- enums with URI value (the others)

ValueType: value_percent, value_money, value_quantity

Certainty: certain, uncertain

Factuality: factual, counterfactual, non_factual

Polarity: polarity_pos, polarity_neg

PartOfSpeech: pos_noun, pos_verb, pos_other

EventClass: event_speech_cognitive, event_grammatical, event_other

TIMEX3Type: timex3_date, timex3_time, timex3_duration, timex3_set

EntityClass: entity_class_spc, entity_class_gen, entity_class_usp,

 entity_class_neg

TIMEX3Modifier: mod_before, mod_on_or_before, mod_mid, mod_end,

 mod_after, mod_on_or_after, mod_less_than, mod_more_than,

 mod_equal_or_less, mod_equal_or_more, mod_start, mod_approx

FunctionInDocument: function_creation_time, function_expiration_time,

 function_modification_time, function_publication_time,

 function_release_time, function_reception_time, function_none

Enumeration values (nwr: namespace)

Namespaces:Attribute types:

Figure 7: NewsReader data model.

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 20/58

Mention layer The position of a mention in a news is encoded with numerical char-
acter offsets based on the NLP Interchange Format (NIF) vocabulary15 (nif:beginIndex,
nif:endIndex, nif:anchorOf), so to enable interoperability with tools consuming NIF data.
Four main types of mentions are distinguished:

• Entity mentions denote entities in the domain of discourse (linked with refersTo).
An optional localCorefID attribute can be used to group mentions coreferring within
a document (intra-document coreference). Entity mentions are further characterized
based on the type of entity:

– Object mentions refer to persons, locations, organizations, products, financial
objects (e.g., “NASDAQ Index”) and mixed entities (e.g., “the CEO and his
company”), discriminated via attribute entityType; the types considered are
those proposed in the revised annotation guidelines of WP3. Object mentions
are described by a syntactic head, a syntactic type (e.g., name, nominal or
pronoun) and a linguistic entity class (e.g., specific referential).

– Time mentions are described using the subset of TIMEX3 properties selected in
NAF and in the annotation guidelines. These properties include: the TIMEX3
type (e.g., date, time, duration); the normalized time value; the function within
the document (e.g., document creation time); relations with other time mentions
(beginPoint, endPoint, anchorTime, valueFromFunction); the optional quantifier
(e.g., “every”), frequency (e.g., twice-a-month) and modifier (e.g., “approx”)
characterizing the expression and whether it is used as a temporal function.

– Event mentions are characterized using a number of attributes: the linguistic
class of the event (e.g., speech-cognitive); the lemma of the token conveying
the event (pred); the part-of-speech (pos), e.g., adjective, noun or verb; the
certainty and factuality of the event, together with a factuality confidence; the
tense, aspect, polarity (e.g., positive) and modality (e.g., “should”) of the verbal
form used. In addition, references to external resources further specifying the
type of event are stored (framenetRef, verbnetRef, propbankRef,nombankRef).

• Relation mentions express relations between two entities, whose mentions are iden-
tified by source and target links. Different kinds of relation mentions are stored:

– Causal links (CLink) express a causal relation between two events.

– Temporal links (TLink) denote a certain temporal relation (relType, e.g., before,
include, simultaneous) among two events or time expressions.

– Subordinate links (SLink) express certain structural relations among events.

– GLinks express grammatical relations among events (as in “the share drop came
on the same day”, with “drop” and “came” being events).

15http://nlp2rdf.org/nif-1-0

NewsReader: ICT-316404 December 18, 2013

http://nlp2rdf.org/nif-1-0

Knowledge store version 1 21/58

– Participation mentions denote the participation of an entity to an event in a cer-
tain thematic role (semRole), possibly further specified by references to external
resources (framenetRef, verbnetRef, propbankRef,nombankRef).

• Signal and CSignal mentions identify pieces of text supporting the existence of a
temporal or causal relation, to which they are linked by relations signal.

• Value mentions are numerical expressions used for quantities (cardinal numbers in
general), percentages and monetary expressions; the type of value is stored.

Entity layer Different kinds of entities are stored, including persons, organizations, geo-
political entities or locations, events, points and intervals in time extracted from text;
the type of entity is conveyed by an rdf:type axiom. The context in which an axiom
holds is described and identified in terms of temporal validity (sem:hasTimeValidity) and
time-referenced point of view (sem:hasPointOfView, e.g., “Financial Times” point of view
expressed on 2013/12/15); the Simple Event Model (SEM) [van Hage et al., 2011] and
the OWL Time16 vocabularies are used to that purpose. Axiom metadata consists of a
confidence value (confidence), a provenance indication (dct:source) and a crystallized flag
(crystallized). Confidence is represented on a 0.0− 1.0 scale and quantifies how reliable an
extracted statement is. Provenance is stored for background knowledge axioms and denote
the external sources they have been imported from (e.g., DBPedia).17 The crystallized flag
is set for axioms belonging to background knowledge or assimilated to it after repeated
extraction of the conveyed information, according to some crystallization algorithm. This
algorithm (to be defined as part of WP6 T6.2) will exploit information such as how many
mentions a statement has been extracted from (attribute ks:extractedFrom) and in which
time frame, as well as which resources (e.g., which kind of news) it was extracted from
and how reliably; it will also consider pre-existing background knowledge, in form of TBox
constraints and other ABox assertions an axiom should be consistent with.

16http://www.w3.org/TR/owl-time/
17The adoption of a provenance model to track sources, authority, and tool processing activities, is still

under definition at project level at the time of writing this deliverable. The data model here presented
might thus be revised according to the resulting provenance model.

NewsReader: ICT-316404 December 18, 2013

http://www.w3.org/TR/owl-time/

Knowledge store version 1 22/58

3 The KnowledgeStore Interfaces

Changes wrt the KnowledgeStore Interfaces described Deliverable D6.1

• revision of the API design criteria, to document some implementation
choices adopted (Section 3.1);

• revised the organization of the API operations in two main KnowledgeStore
endpoints: CRUD and SPARQL (Section 3.2); introduced some examples
of their usage;

• introduced a description of the KnowledgeStore Java API client, with a code
example.

The KnowledgeStore presents a number of interfaces, offered as part of the Knowledge-
Store API, through which external clients may access and manipulate stored data. In this
section we present their abstract definition and their rationale. In particular, Section 3.1
recalls the criteria underlying the design of the API, while Section 3.2 presents an overview
of the operations offered thorough it: two main categories of operations are described, to-
gether with some representative examples. The Java API documentation describing the
full list of operations offered by the KnowledgeStore is available online18.

3.1 API Design Criteria

When designing the API of a complex system such as the KnowledgeStore, a number of
aspects have to be considered carefully. Those aspects, and the solutions adopted for the
implementation of the first version of the KnowledgeStore, are discussed in the following.

Operation granularity An API may offer fine-grained, elementary operations operating
on single objects (e.g., a single mention update), as well as coarse-grained operation that
operate on whole sets of objects at a time (e.g., the simultaneous update of all the mentions
of a certain resource). Fine-grained operation may be inefficient, as modifying a set of
objects requires multiple API calls with the associated overhead; on the other hand, a
coarse-grained approach may result in a complex API with a larger number of (similar,
overlapping) operations due to the need to provide different ways to select the objects to
operate on (e.g., update all the mentions of a given type, with a certain attribute, with
specific identifiers, . . .). In the first release of the KnowledgeStore, we address this issue
by offering efficient coarse-grained operations that operates on multiple objects at once
(borderline case: a single object), but at the same time we introduce an XPath based
selection language to provide clients with a flexible way to select the objects to operate on,
therefore avoiding an explosion of the number of API operations.

18http://newsreader.fbk.eu/knowledgestore/

NewsReader: ICT-316404 December 18, 2013

http://newsreader.fbk.eu/knowledgestore/

Knowledge store version 1 23/58

Message exchange pattern API operations may work according to a synchronous
request-response pattern (the client issues the request and waits for its reply), or accord-
ing to asynchronous message exchange patterns such as asynchronous polling (the client
issues a request and polls repeatedly the server about the status of the operation) or asyn-
chronous notification (the client issues the request and is later notified by the server when
the processing is finished). The request-response pattern is simpler for clients and will
be used in the implementation of the first version of the KnowledgeStore. Asynchronous
approaches cope better with long running API operations, as they avoid timeout issues
at the various network protocol levels: based on the experience gathered with this release
of the KnowledgeStore, we will evaluate whether to investigate and possibly support also
asynchronous message exchange patterns for selected API operations.

Transactional properties Transactions are units of work—either a single operation or
a sequence of operations—to which certain properties are associated, such as the ACID
properties of relational databases: atomicity, consistency, isolation and durability.19 Un-
fortunately, enforcing ACID properties in distributed, scalable systems like the Knowledge-
Store is difficult, inefficient and even theoretically impossible in case system availability
(i.e., the fact every request is answered) is also desired. With this premise, and assuming
the need for partition-tolerance (due to the distributed nature of the system), the CAP
theorem [Gilbert and Lynch, 2002] rules out consistency, and thus ACID in a strict sense.20

The situation asks for a trade-off solution, that for the KnowledgeStore may favour consis-
tency and ACID properties over availability, on the basis that it is deemed preferable for a
client request to fail (in presence of nodes or network failures) rather than returning stale
data. In the first KnowledgeStore release, a coarse-grained API call will behave in a trans-
actional way and satisfy ACID properties on each single object handled in the call (e.g., a
single element in a set of mentions), as this can greatly simplify writing client applications.
This means that each object in the set of objects modified by an API call will be either
successfully modified or not modified at all (atomicity); if modified, the new state of the
object will be valid (consistency) and permanently stored (durability), and no concurrent
client will see intermediate states during the modification of the object (isolation). If feasi-
ble, further developments may support the explicit delimitation of transactions by clients
through the introduction of begin and end transaction operations.

Data validation The specialized data model (see Section 2.2) defines a number of con-
straints that must be satisfied by data both stored in the system and received in input
to API operations. In the first release of the KnowledgeStore, essential data validation on
input data is performed for each API request, in order to check the preconditions which are
instrumental to the successful completion of the operation (e.g., presence and validity of
object identifier and mandatory attributes). However, the KnowledgeStore design is com-

19http://en.wikipedia.org/wiki/ACID
20Eventual consistency, i.e., the fact the system will eventually become consistent in absence of inputs, is

permitted; still, this is a weak form of consistency that has to be taken into consideration by applications.

NewsReader: ICT-316404 December 18, 2013

http://en.wikipedia.org/wiki/ACID

Knowledge store version 1 24/58

patible with more expressive data validation solutions, that may be implemented in future
releases by exploiting the OWL 2 roots of the data model for declaring and validating
complex constraints;21 violations of these constraints may either be reported as warnings
or may cause the API request to fail.

Security Access to the KnowledgeStore API must be restricted only to authorized clients,
since it allows the modification of stored contents and the retrieval of possibly copyrighted
or otherwise access-restricted information (e.g., news articles accessible only for research
purposes). As it is conceivable for the KnowledgeStore API to be made accessible over an
unprotected channel such as the Internet, the first release of the KnowledgeStore imple-
ments suitable technical measures at the API level to enforce client authentication and
to selectively encrypt the exchange of sensitive data. Authentication is based on separate
username/password credentials for each authorized client. Authenticated clients may read
all the contents stored in the KnowledgeStore, possibly with some limitations in terms of
throughput and number per day of read operations (in order to enforce a fair use of the
system); selected clients are also granted write permission on all the stored contents.

3.2 API Operations and Endpoints

To define the operations to be implemented by the KnowledgeStore, all technical partners
of the consortium were asked to analyse the kind of content their modules were expected
to obtain/inject in it, and how. For this purpose, partners were asked to fill in a template
on a page in the project CMS22 with information on operations they were expecting to use
to interact with the KnowledgeStore. For each operation, they were required to provide:

• a name;
• a description explaining the rationale of the operation;
• the input parameters used to invoke the operation;
• the expected output returned by the operation;
• some examples of usage of the operation;
• possible observations about the operation (e.g., optional attributes, or variants);

The collected operations were then first analysed23 to find commonalities, in order to
remove duplicates or operations subsumed by other ones. By adopting a generalization

21In this case, the open world assumption (OWA) underlying OWL 2 and its rejection of the unique
name assumption (UNA) must be taken into consideration. Under OWA, missing mandatory information
is inferred rather than being reported as a constraint violation. This is undesirable for data known to
be complete (e.g., certain resource and mention metadata), in which case OWL 2 extensions such as the
ones presented in [Patel-Schneider and Franconi, 2012] or in [Tao et al., 2010] can be adopted. Concerning
UNA, it holds for the objects managed by the KnowledgeStore. By ignoring it, functionality restrictions
over properties of those objects will infer their equivalence, rather than detect a constraint violation. This
can be fixed by automatically declaring objects in the KnowledgeStore as owl:differentFrom each other.

22Accessible from the KnowledgeStore website: https://newsreader.fbk.eu/knowledgestore
23The analysis here described refers to the content of the operations CMS page as of 15.12.2013; the

page may evolve as additional operations are requested by the processing modules being developed.

NewsReader: ICT-316404 December 18, 2013

https://newsreader.fbk.eu/knowledgestore

Knowledge store version 1 25/58

perspective, to favour an easy deployment of the KnowledgeStore in broader application
scenarios that the scope of NewsReader, we also replaced some of the collected operations
with new ones subsuming them. The full list of resulting operations is described in the
project CMS24.These operations are offered to the users as part of the KnowledgeStore API
through two endpoints: the CRUD endpoint, that provides the basic operations to access
and manipulate the objects stored in all the layers the KnowledgeStore, and the SPARQL
endpoint, that enables flexible access to the semantic content store in the entity layer. Here
below, we present a brief overview of these endpoints and the operations they support.

3.2.1 CRUD Endpoint

The CRUD endpoint provides the basic operations to access and manipulate (CRUD:
create, retrieve, update, and delete) any object stored in any of the layers of the Knowl-
edgeStore. Operations of the CRUD endpoint are all defined in terms of sets of objects,
in order to enable bulk operations as well as operations on single objects. In details, the
following operations are provided for resources, mentions, entities and axioms:

• create (object descriptions) : assigned URIs and/or creation errors

Stores new objects based on their supplied descriptions. Object URIs are supplied
by the client (differently from D6.1 design). Due to data validation, creation may
succeed only for a subset of objects; for the remaining objects no data is stored and
the corresponding URIs and errors are reported to the client. As a large number of
objects may be created in a single call, input descriptions are streamed to the server,
while per-object success or error acknowledgments are streamed back to the client.

• retrieve (condition, output attributes) : object descriptions

Returns all the objects matching a supplied XPath-like condition. The condition can
select objects based on a number of criteria over object types and attributes, possibly
considering complex nested properties (e.g., /ks:storedAs/nie:mimeType = ‘text/plain’
can be used to select all the resources having a plain text representation25). Results
are reported in no particular order and include either all the objects’ attributes or
only the specified set of object attributes (if non-empty). Results are streamed to
the client, that can consume them as they arrive.

• update (condition, object description, merge criteria) : update errors

Updates all the objects matching a supplied condition, setting one or more of their
attributes to a particular value; if the attributes were already set, merge criteria can
be optionally used to combine old values with new ones (e.g., overwrite, take the union
of the two, . . .). This operation mirrors the corresponding SQL update command
and permits to efficiently clear or set one or more attributes on an unbound set
of objects, avoiding the overhead of first retrieving the objects to modify and then
updating their attributes one object at a time. Similarly to create, it is possible

24Accessible from the KnowledgeStore website: https://newsreader.fbk.eu/knowledgestore
25Please refer to the online documentation for the full condition syntax.

NewsReader: ICT-316404 December 18, 2013

https://newsreader.fbk.eu/knowledgestore

Knowledge store version 1 26/58

that only a subset of the objects is updated (e.g., because of data validation); for the
remaining objects, URIs and errors are reported to the client.

• delete (condition) : deletion errors

Deletes all the objects matching a supplied condition. Note that objects on which
other objects depend (e.g., a resource referenced by some mention) cannot be deleted.
Therefore, it is possible for the operation to delete only a subset of the matching
objects; for the remaining objects, URIs and errors are reported to the client.

• merge (object descriptions, merge criteria) : merge errors

Updates a set of objects given their identifiers, setting one or more attributes (or
entity axioms) to specific values and possibly applying merge criteria to combine old
and new values. The operation is idempotent and provides an additional way to
update existing data, supporting the common use case where a bunch of objects is
processed (e.g., by an NLP module) resulting in new attributes being computed, and
the resulting local descriptions have to be merged back with the complete descriptions
in the KnowledgeStore. Note that merging may succeed only for a subset of objects
(because of data validation or change of unmodifiable attributes); for non-merged
objects, URIs and errors are reported to the client.

• count (condition) : # matching objects

Returns the number of objects matching a supplied condition. The operation is
strictly redundant as it can be implemented based on retrieve; nevertheless, it is
defined in order to avoid the retrieval of huge quantities of data from the Knowl-
edgeStore when just a count is needed. This operation might be replaced by a more
general aggregate() operation in future versions of the KnowledgeStore.

While all the above operations work on objects of the same kind (on a single call), the
CRUD endpoint offers also retrieval operations that affects objects from different layers of
the KnowledgeStore. An example, is the general-purpose match operation:

• match (condition and output attribute URIs at resource, mention, entity and

axiom levels) : matching <resource, mention, entity, axiom> 4-tuples

Returns a set of 〈resource, mention, entity, axioms〉 4-tuples whose mention occurs in
the resource, refers to the entity and supports the extraction of the axioms, and such
that the attributes on all the four components satisfy the specified conditions; for
each tuple, a specified set of output attributes for the four components is returned.26

The CRUD endpoint is made available to external KnowledgeStore users in two modal-
ities: through an HTTP ReST Server, and as a Java client: the former favours the inte-
gration of the KnowledgeStore in complex frameworks where tools developed with different
technologies are deployed; the latter, actually built on top of the former, enables the easy

26With respect to D6.1 design, the axioms component has been added to address a new requirement
from the decision support tool suite of WP7.

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 27/58

<rdf:RDF xmlns:nwr="http://dkm.fbk.eu/ontologies/newsreader#" ...>
 <nwr:News rdf:about="http://newsreader.fbk.eu/resources.rdf/r105">
 <dcterms:title>Salesforce Is A Platform Company. Period.</dcterms:title>
 <dcterms:publisher rdf:resource="http://dbpedia.org/resource/TechCrunch" />
 <dcterms:issued>2013-09-30</dcterms:issued>
 <nfo:fileURL>http://techcrunch.com/2013/09/30/...</nfo:fileURL>
 <nie:isStoredAs rdf:resource="http://newsreader.fbk.eu/resources.rdf/r105.txt">
 <nfo:fileName>r105.txt</nfo:fileName>
 <nfo:fileSize>15012</nfo:fileSize>
 <nfo:fileCreated>2013-09-30</nfo:fileCreated>
 <nie:mimeType>text/plain</nie:mimeType>
 </nie:isStoredAs>
 </nwr:News>
 ...
</rdf:RDF>

curl –request GET http://newsreader.fbk.eu/kstest/resources.rdf?$where=
 dct:publisher = dbpedia:TechCrunch (*)

(*) URL encoding omitted

Figure 8: Invocation of CRUD retrieve operation through the HTTP ReST endpoint.

integration in Java-based tools. Figure 8 shows the invocation through the HTTP ReST
CRUD endpoint of a retrieve operation of resources with dct:publisher being equal to dbpe-
dia:TechCrunch, while Figure 8 illustrates the use of the KnowledgeStore Java client within
an application for retrieving all the mentions of type nwr:entity type per.

3.2.2 SPARQL Endpoint

The SPARQL endpoint allows to query crystallized axioms in the entity layer using the
SPARQL query language27, a W3C standard for retrieving and manipulating data in Se-
mantic Web repositories. This endpoint provide a flexible and Semantic Web-compliant
way to query for entity data, and leverages the grounding of the KnowledgeStore data
model in Knowledge Representation and Semantic Web best practices. Here below is the
description of the sparqlQuery() operation offered by the SPARQL endpoint:28

• sparqlQuery(query, dataset) : query solutions or RDF triples]
Evaluates the supplied SPARQL query on the RDF data encoding crystallized axioms
or on a subset of it identified by the dataset parameter. The input query string could
be in the SELECT, ASK, CONSTRUCT or DESCRIBE forms, while the optional
dataset specification is a set of default graph URIs and named graph URIs (see
FROM and FROM NAMED clauses of SPARQL). The expected output is either a
list of query solution (tuples of variable bindings) for SELECT and ASK queries, or
a set of RDF triples for CONSTRUCT or DESCRIBE queries

Figure 10 shows an example of querying some contextualized axioms stored in the
KnowledgeStore, and the result obtained. On the left side, we have an excerpt of the

27http://www.w3.org/wiki/SPARQL
28The definition of the sparqlQuery() operation is based on the SPARQL protocol standard [Feigen-

baum et al., 2013]; indeed, the SPARQL protocol is used to implement this API operation.

NewsReader: ICT-316404 December 18, 2013

http://www.w3.org/wiki/SPARQL

Knowledge store version 1 28/58

import org.openrdf.model.*;
import eu.fbk.knowledgestore.*;
import eu.fbk.knowledgestore.model.*;

Store ks = new StoreClient("http://newsreader.fbk.eu/kstest");
Session s = ks.newSession("username", "password");

try {
 Cursor<Record> i = s.retrieve(KS.MENTION)
 .where("nwr:entityType=nwr:entity-type-per")
 .select(NIF.ANCHOR_OF, NWR.SYNTACTIC_HEAD)
 .exec();
 while (true) {
 Record mention = i.next();
 if (mention == null) break; // cursor exhausted;

 String extent = mention.getUnique(NIF.ANCHOR_OF, String.class);
 String head = mention.getUnique(NWR.SYNTACTIC_HEAD, String.class);

 URI uri = myNEDSystem.disambiguate(head, extent);

 mention.set(KS.REFERS_TO, uri);

 s.merge(mention, MergeCriteria.override(KS.REFERS_TO));
 }
} finally {
 c.close();
}

based on Sesame API (http://www.openrdf.org)

cursor model for streaming data

mentions & other objects
are records of key-value
pairs; URIs used as keys

XPath-based conditions

selection of
output attributes

merge criteria to combine
new and old data

Figure 9: Using the KnowledgeStore client within a Java application.

ex:module_01 {
 dbpedia:Volkswagen ex:marketShare "9.6%". }

ex:module_02 {
 dbpedia:Volkswagen ex:marketShare "12.3%". }

ckr:global {
 ex:ctx_15 a ckr:Context;
 ckr:hasModule nwr:module_01;
 sem:hasPointOfView ex:pov_19;
 sem:hasTimeValidity ex:time_2007.

 ex:ctx_16 a ckr:Context;
 ckr:hasModule ex:module_02;
 sem:hasPointOfView ex:pov_19;
 sem:hasTimeValidity ex:time_2011.

 ex:time_2007 a time:Interval;
 time:hasBeginning [
 time:inXSDDateTime "2007-01-01"];
 time:hasEnd [
 time:inXSDDateTime "2007-12-31"].

 ex:time_2011 a time:Interval;
 time:hasBeginning [
 time:inXSDDateTime "2011-01-01"];
 time:hasEnd [
 time:inXSDDateTime "2011-12-31"].

 ex:pov_19 a sem:PointOfView;
 sem:hasAuthority dbpedia:Forbes;
 sem:hasPointOfViewTime ex:pov_19_time.

 ex:pov_19_time a time:Instant;
 time:inXSDDateTime "2012-06-26".
}

Given this RDF data in the KS…

share from to authority

9.6% 2007-01-01 2007-12-31 dbpedia:Forbes

12.3% 2011-01-01 2011-12-31 dbpedia:Forbes

… getting the following results:

SELECT ?share ?from ?to ?authority
WHERE {
 GRAPH ?m {
 dbpedia:Volkswagen ex:marketShare ?share
 }

 GRAPH nwr:global {
 ?ctx a ckr:Context;
 ckr:hasModule ?m;
 sem:hasPointOfView ?pov;
 sem:hasTimeValidity ?interval.

 ?pov a sem:PointOfView
 sem:hasAuthority ?authority.

 ?interval a time:Interval;
 time:hasBeginning ?from
 time:hasEnd ?to.

 ?begin time:inXSDDateTime ?start.

 ?end time:hasEnd ?end.
 }
}

… we ask for Volkswagen market share trend …

Figure 10: SPARQL endpoint example.

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 29/58

KnowledgeStore content showing the information on the market share of Volkswagen in two
different contexts, one referring to 2007 and one to 2011, both having Forbes as associated
authority. In our approach (see Section 2.1), each axiom corresponds to a set of 〈subject,
predicate, object〉 triples within a named graph [Carroll et al., 2005]—e.g., nwr:module 01
and nwr:module 02—that is linked to the context where the axiom holds—e.g., nwr:ctx 15
and nwr:ctx 16, which are the contexts associated to the axioms. On the right side we have
(top box) a SPARQL query asking any market share content related to Volkswagen, the
time validity of the information, and the authority that expressed it. As shown by the
query, clients interacting with the SPARQL endpoint have to be aware of the contextual
organization of data in the KnowledgeStore to properly formulate the query and interpret
its results, that for the example are shown on the right side, bottom box.

Similarly to the CRUD one, the SPARQL endpoint is made available to the exter-
nal KnowledgeStore users in two modalities: through an HTTP Server compliant to the
SPARQL protocol, and as part of the Java client.

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 30/58

4 The KnowledgeStore Architecture and Implementation

Changes wrt the KnowledgeStore Architecture described Deliverable D6.1

• revision of system architecture, adapted to changes in data model (esp.
axiom representation) and interfaces (esp. transactional guarantees of API
operations) (Section 4.1)

• additional details about the use of HBase, including server-side filtering and
integration with the OMID transaction manager (Section 4.1.1)

• additional details about the use of Virtuoso, including non-transactional
updates and failure recovery (Section 4.1.2)

• description of the Java implementation of the system, featuring modular
code organization and comprehensive manually and automatically generated
documentation available online (Section 4.2)

This section describes the architecture of the KnowledgeStore and its software imple-
mentation. The KnowledgeStore is a client-server system that relies on distributed and scal-
able software components to store information of the data model and expose it through the
CRUD and SPARQL endpoints. Section 4.1 describes the architecture of the system focus-
ing on the main software components, namely Hadoop and HBase, the Virtuoso triple store
and the KnowledgeStore Frontend Server that has been specifically developed to realize the
KnowledgeStore functionalities on top of the other components. Section 4.2 provides an
high level overview of the software implementation of the KnowledgeStore and, particularly,
of the KnowledgeStore Frontend Server; additional details on the software implementation,
including Javadoc documentation and auto-generated reports on various aspects of the
code, are available online on the KnowledgeStore site.29

4.1 Architecture

As introduced in Section 1 with Figure 2, the KnowledgeStore is a storage server: the other
NewsReader modules are KnowledgeStore clients that utilize the services it exposes to store
and retrieve all the shared contents they need and produce. Figure 11 shows the overall
KnowledgeStore architecture, highlighting its client-server nature.

Client side The client side (upper part of Figure 11) consists of a number of applications
that access the KnowledgeStore through its two CRUD and SPARQL endpoints, either
by direct HTTP interaction (for applications in any programming language), using the
specifically developed Java client (for Java applications) or any of the available SPARQL
client libraries30 for accessing the SPARQL endpoint, thanks to its standard-based nature.
From a functional point of view, client application may carry out different tasks:

29http://newsreader.fbk.eu/knowledgestore
30See http://www.w3.org/wiki/SparqlImplementations.

NewsReader: ICT-316404 December 18, 2013

http://newsreader.fbk.eu/knowledgestore
http://www.w3.org/wiki/SparqlImplementations

Knowledge store version 1 31/58

Java applications

KnowledgeStore
Frontend

Server

KnowledgeStore Java client

Hadoop HDFS
(name & data nodes)

HBase
(multiple master & region server nodes)

Virtuoso
(single node)

Mention Resource Entity Axiom RDF Triple Representation

Any application

(HTTP access to the KS, possibly
exploiting SPARQL client libraries)

(partial) replication

Zookeeper
(mult. nodes)

distributed

synchronization

Client-side

Server-side

SPARQL endpoint CRUD endpoint

OMID
(single node)

transaction
manager

Figure 11: KnowledgeStore architecture.

• populators are clients whose main purpose is to feed the KnowledgeStore with new
data; they play an important role in the NewsReader system, since they write into the
KnowledgeStore the basic contents needed by other applications, such as the resources
supplied by data providers and the background knowledge about entities;
• linguistic processors can also act as clients, by reading their input data from the

KnowledgeStore and writing back the results of their computation;
• other client applications may be mainly interested in reading data from the Knowl-

edgeStore: an example is the Decision Support Tool Suite of WP7.

Server side The server side part of the architecture (lower part of Figure 11) consists
of a number of software components distributed on a cluster of machines that are accessed
through a KnowledgeStore frontend server:

• the Hadoop HDFS filesystem provides a reliable and scalable storage for the physical
files holding the representation of resources (e.g., texts and linguistic annotations of
news articles);
• the HBase column-oriented store builds on the Hadoop filesystem to provide databases

services for storing and querying semi-structured information about resources, men-
tions and entities;
• the Virtuoso triple store stores and indexes crystallized axioms to provide services

supporting reasoning and online SPARQL query answering, which cannot be easily

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 32/58

and efficiently implemented in HBase or Hadoop;
• the OMID transaction manager31 is used in combination with HBase to enforce the

transactional guarantees of KnowledgeStore API operations (see Section 3.1);
• the ZooKeeper synchronization service is used to access and manage HBase nodes.
• the KnowledgeStore frontend server has been specifically developed to implement the

operations of the two CRUD and SPARQL endpoints on top of the components listed
above, handling global issues such as access control, data validation and operation
transactionality.

Not shown in Figure 11 are the additional tools and scripts for managing the complexity
of software deployment in a cluster environment (potentially a cloud environment); they
include, for example, the management scripts for infrastructure (daemons) deployment,
start-up & shut-down, data backup & restoration and gathering of statistics. It is worth
noticing that the KnowledgeStore is a passive component, without any active role concerning
the orchestration of other NewsReader modules. External orchestration—if needed—may
be defined within WP2 in light of the general NewsReader system architecture; for instance,
it might employ an external orchestrator polling (or being notified by) the KnowledgeStore
about the availability of new contents, which may activate other processing modules.

In the following, we present the main server-side software components of the Knowl-
edgeStore architecture, namely HBase & Hadoop (Section 4.1.1), Virtuoso (Section 4.1.2)
and the KnowledgeStore Frontend Server (Section 4.1.3).

4.1.1 HBase & Hadoop

Hadoop32 and HBase33 are frameworks developed by Apache to manage scalability for file
systems and databases, respectively. Distributed computation on multiple nodes, replica-
tion and fault tolerance with respect to single node failure are their key features. HBase
is particular suited for random, real time read/write access to huge quantity of data (such
as big data), when the data’s nature does not require a relational model. HBase belongs
to the NoSQL database family: it provides a mechanism for storage and retrieval of data
that use looser consistency models than traditional relational databases in order to achieve
horizontal scaling and higher availability. It does not (natively) support SQL-like queries.

The KnowledgeStore utilizes the Hadoop distributed file system (DFS) to store resource
representations, that is the physical files such as news documents or custom annotations
provided by the linguistic processors. HBase is used as a database to store the remaining
information, with dedicated tables for storing resource metadata, mentions, contexts and
entities with their metadata. For the table schema, a “blob approach” has been adopted
for all the tables. In this approach each object is stored in a single row with a single
column entry that encodes all the attributes and related values associated to such object.

31https://github.com/yahoo/omid
32http://hadoop.apache.org
33http://hbase.apache.org

NewsReader: ICT-316404 December 18, 2013

https://github.com/yahoo/omid
http://hadoop.apache.org
http://hbase.apache.org

Knowledge store version 1 33/58

The encoding is based on schemas compliant with the Apache Avro34 data serialization
system. Benefits of this solution include space efficiency and transactional update of ob-
ject values, as single-row operations are inherently transactional in HBase. Operations
of the KnowledgeStore API may however affect multiple rows in different tables for each
modified object, as happen, for instance, when a new mention is stored and the rows for its
containing resource and associated entity must be modified to link them to the mention.
To provide the transactional guarantees of the KnowledgeStore API for these operations
in presence of multiple concurrent clients we used the OMID transaction package35, which
provides a full transaction manager over HBase. OMID exploits the versioning capabilities
of HBase to realize a Multiversion Concurrency Control (MVCC) mechanism36 on top of
HBase, similarly to many databases. Transactionality of a read-only operation is achieved
by reading the snapshot of data produced by the most-recently completed read-write oper-
ation. Transactionality of a read-write operation is achieved by storing modified data with
an incremented version number, while preserving old data; when the operation completes,
possible conflicts due to the concurrent modification of the same object by other operations
are detected by OMID, and resolved by allowing only one of these operations to succeed
and persistently store its data.

The storage of data of the entity layer in HBase deserves a special description, as this
data is also (partially) stored in the triple store. Figure 12 shows an example of how
this data is stored in the two systems. Within HBase, the entity URI, URIs of referring
mentions and the axioms describing an entity with their metadata are all stored in an entity
table; context definitions are instead stored in a context table whose rows are referred by
axioms of the entity table. This organization represents a change with respect to the
design of deliverable D6.1, which provided for an axiom and a context tables, and allows
to lookup the description of an entity in a single, more efficient operation. Figure 12 shows
also how entities can be both ABox instances (dbpedia:Volkswagen) and TBox concepts
(dbo:Company). It also shows that axiom metadata (e.g., provenance and confidence values)
is only stored within HBase, as (i) it is often irrelevant to SPARQL user queries, and (ii) it
would cause an explosion of the number of triples stored in the triple store, causing a severe
degradation of performances.37

4.1.2 Virtuoso

In order to support SPARQL queries on entity data received via the KnowledgeStore
SPARQL endpoint (see Section 3.2.2), axioms are indexed in a triple store by storing
using the RDF representation described in Section 2.1, i.e., as sets of 〈subject, predicate,
object〉 RDF triples within named graphs (the modules) that are connected to context

34http://avro.apache.org/
35https://github.com/yahoo/omid/wiki
36http://en.wikipedia.org/wiki/Multiversion_concurrency_control
37Note, however, that in the KnowledgeStore implementation it is always possible to go back and forth

from one representation to the other, since axioms are uniquely identified by their 〈subject, predicate,
object, context〉 components which are stored both in HBase and in the triple store.

NewsReader: ICT-316404 December 18, 2013

http://avro.apache.org/
https://github.com/yahoo/omid/wiki
http://en.wikipedia.org/wiki/Multiversion_concurrency_control

Knowledge store version 1 34/58

HBase entity table

entity ID ks:referredBy ks:describedBy

dbo:Company

dbpedia:

 Volkswagen

nwr:m104,

nwr:m131,

…

axiom ID ks:encodedBy context dc:source …

ax:f14e16 dbpedia:Volkswagen

nwr:worldMarketShare "12.2%"

nwr:ctx15 nwr:news1 . . .

.

axiom ID ks:encodedBy context dc:source …

ax:f14e15 dbpedia:Company rdfs:subClassOf _:x
_:x rdf:type owl:Restriction
_:x owl:onProperty nwr:worldMarketShare
_:x owl:maxCardinality "1"^^xsd:int

nwr:global nwr:tbox . . .

.

context URI rsem:hasPointOfView rsem:hasTimeValidity

nwr:ctx15 <http://businessandeconomy.org> … 2012-05-30 …

HBase context table

Triple Store axiom storage

nwr:module_01 {
 dbpedia:Volkswagen nwr:worldMarketShare "12.2%" .
}

ckr:global {
 nwr:module_01 rdf:type ckr:Module .

 nwr:ctx15 rdf:type ckr:Context .
 nwr:ctx15 ckr:hasModule nwr:module01 .
 nwr:ctx15 sem:hasPointOfView ...
 nwr:ctx15 sem:hasTimeValidity ...
}

RDF encoding of axioms as
described in Data Model section

Axiom metadata only in Hbase, as would
cause explosion of triples in Triple Store

Figure 12: Axiom representation in HBase and in the Virtuoso Triple Store.

definitions in a specific ckr:global graph; as previously anticipated and shown in Figure 12,
axiom metadata is not indexed and cannot thus be directly queried using SPARQL. The
Open Source Edition of the Virtuoso triple store38, version 7.0.0, has been chosen, moti-
vated by its excellent performances in recent (April 2013) benchmarks39 and its GPL v2
license. The Open Source Edition is limited to a single node deploy; additional scalability
and transparent fault tolerance can be obtained using the (commercial) Enterprise Edition.

Virtuoso is accessed by the KnowledgeStore Frontend Server via the OpenRDF Sesame
API40, using the Virtuoso Sesame driver.41 The Sesame API enables a uniform access to
triple stores from Java applications, thus making easier to replace Virtuoso with a different
triple store, should the need arise within or beyond NewsReader (e.g., for scaling up but

38http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
39http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V7/
40http://www.openrdf.org/
41We customized the Virtuoso Sesame driver to improve bulk loading performances when RDF triples

are organized in many named graphs; based on the results we will measure, modifications will be possibly
released to the Virtuoso community.

NewsReader: ICT-316404 December 18, 2013

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V7/
http://www.openrdf.org/

Knowledge store version 1 35/58

?ctx { ?x rdf:type ?c1 }
ks:global { ?c1 rdfs:subClassOf ?c2 }

?ctx { ?x rdf:type ?c2 }

(a) Contextual version of RDFS9

?ctx1 { ?s ?p ?o }
ks:global { ?ctx2 skos:broader ?ctx1 }

?ctx2 { ?s ?p ?o }

(b) Propagation from broader contexts

Figure 13: Examples of inference rules

also for scaling down the system by adopting a more lightweight triple store). Although
the Sesame API allows for a transactional access to triple stores, performances of transac-
tional data ingestion into Virtuoso resulted inadequate to the needs of the KnowledgeStore.
Therefore, we decided to use Virtuoso exclusively in a non-transactional mode, adopting
an approach that guarantees users of the SPARQL endpoint to access data that is always
consistent and synchronized with the content stored in HBase and accessible via the CRUD
endpoint. More in details, we consider content in HBase the master copy of data in the
KnowledgeStore, relying on the fault-tolerance of HBase and the transactional data manip-
ulation provided by OMID. Virtuoso is considered just an auxiliary index used exclusively
for SPARQL queries. Synchronization of axiom data from HBase to Virtuoso is performed
each time a data modification request to the KnowledgeStore API completes successfully,
by excluding concurrent SPARQL accesses to Virtuoso (a simple multiple readers / single
writer locking mechanism is used42). A synchronization failure (e.g., due to a problem with
Virtuoso) is detected externally and, lacking a transactional log, triggers a full repopulation
of Virtuoso starting from contents in HBase.43

The Virtuoso triple store component is tightly related to the support of logical infer-
ence in the KnowledgeStore. Inference aims at deriving the additional statements implied
by stored data (ABox) and the ontologies defining its schema (TBox), and making them
available as possible answers to applications and users queries. For instance, if a statement
describes dbpedia:Volkswagen as a nwr:PublicCompany and nwr:PublicCompany is a subclass
of nwr:Company in the KnowledgeStore background knowledge, then a query for all com-
panies (e.g., from the decision support suite) is expected to return dbpedia:Volkswagen as
an answer. Although logical inference is a task for the second year of the project (T6.3,
starting month 15), it is worth noticing here that inference techniques such as closure mate-
rialization and rule-based reasoning can be efficiently implemented in a triple store such as
Virtuoso, possibly on top of its SPARQL query answering capabilities44. Closure material-
ization may help to cope with the large amount of entity data stored in the KnowledgeStore,
by storing the logical closure of loaded data thus speeding up online query answering. Cus-

42http://en.wikipedia.org/wiki/Readers-writer_lock
43The worst-case scenario repopulation is an expensive operation that may prevent SPARQL accesses

for a long time (in the order of hours); therefore, this mechanism might be further refined in future releases
of the KnowledgeStore, e.g., by repopulating from disk backups or using multiple instances of Virtuoso,
one of which being always available for query answering while the others are synchronized.

44Rule-based reasoning can be implemented through the fix-point evaluation of SPARQL queries.

NewsReader: ICT-316404 December 18, 2013

http://en.wikipedia.org/wiki/Readers-writer_lock

Knowledge store version 1 36/58

tomized rule-based reasoning can be necessary to consider the contextual validity of stored
axioms, as no standardized ontological language currently supports reasoning with contex-
tualized data. As a reference, Figure 13 shows two examples of customized inference rules:
rule in Figure 13a extends rule RDFS9 (the rule responsible for the dbpedia:Volkswagen
inference example above) and is applied on a per-context basis using TBox definitions (the
rdfs:subClassOf triples) declared in a global context ks:global; rule in Figure 13b propagates
statement holding in a context (e.g., time validity 2013) to other contexts declared (or
found, via inference) to be narrower in scope (e.g., time validity 2013/12/15).

4.1.3 Frontend Server

The Frontend Server is a specifically developed Java daemon that provides the external
API of the KnowledgeStore, implementing it on top of Hadoop, HBase and Virtuoso.

The implementation of the SPARQL endpoint is based on the SPARQL protocol45

standardized by W3C. The CRUD endpoint is instead implemented as an HTTP ReST
service using JSON for Linked Data (JSON-LD)46 as the data format. JSON-LD is a
W3C proposed recommendation for encoding Linked Data in JSON, thus inheriting the
tool support, readability characteristics and developer friendliness of the JSON format
while being a concrete RDF syntax at the same time. The adoption of JSON-LD greatly
improves the usability of the CRUD endpoint, allowing both RDF-aware as well as JSON-
based applications (even dynamic web sites using Javascript / AJAX) to easily interact with
the KnowledgeStore. HTTP authentication is used to implement the security requirements
of the API, while HTTP compression supports the efficient transmission of JSON-LD data.

Internally, calls to the SPARQL endpoint are all forwarded to Virtuoso, while the
majority of calls to the CRUD endpoint are forwarded to HBase & Hadoop, although
count() and retrieve() operations for axioms and entities without axiom metadata may be
also answered by Virtuoso. Data modification operations are implemented by performing
a number of transactions (one per affected object or group of objects) on HBase, using the
OMID transaction manager. Upon successful completion of transactions, data modified in
HBase is synchronized to Virtuoso; in the future, this will also trigger inference, which is
transparently performed each time data is written through the API.

4.2 Implementation

The implementation of the KnowledgeStore architecture described in Section 4.1 comprises
two activities: (i) development of the software components specific to the KnowledgeStore,
namely the KnowledgeStore Frontend Server and the Java Client library; and (ii) setup of
the test and production deployment environments where all the server components of the
system are integrated in a unifying framework. Software development is detailed in Sec-
tion 4.2.1, while setup of deployment environments is described in Section 4.2.2. Note that
other software tools were specifically developed for the population of the KnowledgeStore

45http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
46http://json-ld.org/

NewsReader: ICT-316404 December 18, 2013

http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
http://json-ld.org/

Knowledge store version 1 37/58

Javadoc reference
documentation

Test
coverage

reports

Code metrics reports

Figure 14: Examples of generated reports on the KnowledgeStore web site.

and the collection of background knowledge; since these tools operate as applications built
on top of the KnowledgeStore, they are not described here but in Section 5.

4.2.1 Software development

The KnowledgeStore Frontend Server and the Java Client library have been developed in
Java 1.6 following best practices for Java development.

The Apache Maven47 build system and model have been used to manage the overall
source code organization and all the phases of the build lifecycle (compiling, testing, re-

47http://maven.apache.org/

NewsReader: ICT-316404 December 18, 2013

http://maven.apache.org/

Knowledge store version 1 38/58

lease, . . .), in combination with the Eclipse48 Integrated Development Environment (IDE)
for code writing. Maven represents the de-facto standard for Java software development. It
eases the understanding and sharing of a software project among developers by favouring
code modularity and convention over configuration. It provides a declarative dependencies
model that facilitates building complex systems with many third-party libraries (as the
KnowledgeStore), as well as using the components built in other applications. Finally, it
supports the generation of comprehensive reports and Web documentation that provide at
any moment a clear picture of the “health status” of a software project.

Maven capabilities have been fully exploited for the development of the Knowledge-
Store. The adopted Maven setup allows for the automatic building, testing, packaging and
distribution of the Frontend Server and the Java Client, with binaries of both components
published online49 according to Maven standards and easily importable in client applica-
tion via the Maven dependency mechanism. The automatic generation of the project Web
site has been configured, integrating both reports automatically generated by Maven and
documentation manually authored that cover the deployment of the system and the use
of the Java Client; examples of generated reports (including Javadocs) are shown in Fig-
ure 14. A Maven multi-module project organization has been adopted, with code organized
in modules according to a functional criterion, as shown in Figure 15. This organization
makes developing the different parts of the system easier, as work on each module can
largely proceed independently of other modules, as well as more flexible, as new modules
can be added and existing modules can be reimplemented in the future without breaking
the overall structure. Following, a short description of the modules is reported:

ks-core Contains core abstractions and basic functionalities shared by the Frontend
Server and the Java Client, defining a Java version of the KnowledgeStore API.

ks-runtime Contains general-purpose code used by different modules of the Frondend
Server (e.g., configuration, synchronization, locking, file system access).

ks-filestore Realizes a file store sub-component that manages the files containing repre-
sentations of resources (news, NLP annotations). It implements the standard read, write
and delete operations over files on top of Apache Hadoop HDFS version 1.0.4, exploiting
the scalability and fault tolerance features that Hadoop provides.

ks-datastore & ks-datastore-hbase Realize a data store sub-component managing
semi-structured data about resources, mentions and entities. Module ks-datastore contains
the abstract data store definition, while ks-datastore-hbase provides a concrete implemen-
tation on top of Apache HBase version 0.94.10, OMID and Apache Avro version 1.5.3;
other implementation modules supporting alternative backends may be added later.

48http://www.eclipse.org/
49http://newsreader.fbk.eu/knowledgestore

NewsReader: ICT-316404 December 18, 2013

http://www.eclipse.org/
http://newsreader.fbk.eu/knowledgestore

Knowledge store version 1 39/58
ks

-m
ai

n

ks-runtime

ks-filestore

ks-core

ks-datastore ks-triplestore

ks-
datastore-

hbase

ks-server

ks-triplestore-
virtuoso … …

ks-core

ks-client-java
Java Client library

client-side implementation of KS
Java API by forwarding to CRUD/
SPARQL server endpoints

Java client application

CRUD endpoint SPARQL endpoint

KS Frontend Server

implementation of SPARQL and
CRUD endpoints over Java API

server-side impl. of KS Java API

storage sub-components (using
Hadoop HDFS, HBase, Virtuoso)

runtime services (e.g., locking
configuration, synchronization)

KS Java API, core abstractions,
code shared on server & client

ks-frontend

Figure 15: Modular code organization.

ks-triplestore & ks-triplestore-virtuoso Realizes a triple store sub-component for
storing the RDF statements of axioms and supporting SPARQL querying. Module ks-
triplestore contains the abstract definition of the sub-component, while ks-triplestore-
virtuoso provides its implementation on top of Virtuoso version 7.0.0; other implementation
modules for alternative backends may be added in the future.

ks-frontend Represents the core of the Frontend Server, implementing the Java ver-
sion of the KnowledgeStore API on top of the file store, data store and triple store sub-
components. This module provides a fully operational, non client-server version of the
KnowledgeStore that can be embedded in applications similarly to an embedded database.

ks-server Implements the CRUD and SPARQL KnowledgeStore endpoints as HTTP
ReST services on top of the ks-frontend module, enabling a client-server use of the system.

ks-main Implements the KnowledgeStore executable server daemon, by configuring and
controlling the services provided by ks-server, ks-frontend and its sub-components.

ks-client-java Provides the Java Client library, building on top of the abstractions of
ks-core and implementing the Java version of the KnowledgeStore API by translating API
calls in HTTP requests to the CRUD and SPARQL server endpoints.

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 40/58

4.2.2 Deployment environments

To develop, test and operate the KnowledgeStore we have setup two kinds of deployment
environments: (i) a single-machine setup and a (ii) a small cluster of four workstations.
The former has been created for local development and fast testing; it integrates all the
software components required by the KnowledgeStore server ready for use and is distributed
among developers in the form of a VirtualBox50 virtual machine. The latter is being used
for distributed testing and the initial deployment of the KnowledgeStore. The workstations
are commodity hardware with RAM ranging from 8 to 32 Gb and local disk size of 1 Tb,
running Linux Red Hat Enterprise release 6.5. For both the environments, a number of
scripts has been developed for managing the configuration, startup and shutdown of the
system.

50https://www.virtualbox.org/

NewsReader: ICT-316404 December 18, 2013

https://www.virtualbox.org/

Knowledge store version 1 41/58

5 The KnowledgeStore Population

This section is about the population of the KnowledgeStore with resource, mention and
entity data produced within the NewsReader project.

Resource and mention data come from the NLP pipeline of WP4 and is expressed ac-
cording to the NewsReader Annotation Format (NAF). Storing this data in the Knowledge-
Store implies parsing the NAF contents, extracting the contained resources and mentions
and loading them in the system via the CRUD endpoint. These activities are specifically
supported in WP6 with the realization of a NAF populator, described in Section 5.1, that
acts as a bridge between the KnowledgeStore and the NLP pipeline of WP4.

Entity data, on the other hand, consists of RDF graphs containing either the background
knowledge collected from external sources or the results of the NLP processing carried out
in WP5. The population of the KnowledgeStore with this data is supported in WP6 with
the realization of a general purpose, context and metadata-aware RDF populator, described
in Section 5.2, and with the acquisition of background knowledge from Linked Open Data
(LOD) sources, described in Section 5.3.

5.1 NAF populator

Starting from news documents, the linguistic processors of the NLP pipeline produce an-
notations encoded according to the NewsReader Annotation Format (NAF). Annotations
in NAF files are organized on different layers and may include (explicit or implicit) repre-
sentations of mentions and entities: in order to be shared among the NewsReader modules,
such objects need to be identified in the NAF files and stored in the KnowledgeStore. More-
over, the original news documents, as well as the NAF files themselves, represents useful
Resources to be shared through the KnowledgeStore.

As shown in figure 16, the NAF populator is the module that takes in input a NAF file,
identifies the relevant information it conveys in terms of resources, mentions and entities
and stores them in the KnowledgeStore interacting with its APIs. It is worth noticing
here that the NAF populator is not expected to add any information to those encoded in
the NAF files. Its duty is to recognize the formats in which the objects relevant to the
KnowledgeStore are encoded in the NAF files, and transform such objects into invocations to
the KnowledgeStore APIs to store them explicitly. Operations that add information to NAF
file contents – such as coreference or linking – are outside the tasks of the NAF populator.
Another aspect related to the previous is the assumption that the NAF populator is not
expected to check the semantic correctness of the information encoded in the NAF files: it
stores in the KnowledgeStore any storable data it is able to find. We can think to the NAF
populator as a tool that transfers objects from the NAF format to the KnowledgeStore
Data Model through the KnowledgeStore APIs.

Given its task, the most important issue that the NAF populator should address is the
mapping of the NAF representations into the KnowledgeStore data model (see section 2).
This is crucial because the KnowledgeStore can store only objects that comply with the
data model underlying it. Let us consider an example of a piece of NAF file:

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 42/58

NLP
Processing
Pipeline(s)

3. Mentions & Entities
populator

NAF
files

Knowledge
Store

news

NAF

NAF
populator

2. NAF
populator

1. news
populator

NAF

news

mentions,
entities

Figure 16: NAF population.

<text>

<wf id="w1" length="5" offset="0" sent="1">Barak</wf>

<wf id="w2" length="5" offset="6" sent="1">Obama</wf>

</text>

<entity id="e1" type="person">

<references>

<word id="w1"/>

<word id="w2"/>

</references>

</entity>

This portion of NAF encodes a mention whose main attributes are its type (”person”) and
its extent (the text “Barak Obama”). Other information related to this mention can be
extracted, for example its starting character index in the text (being 0) and its ending
character index (11). In order to be compliant with the KnowledgeStore data model, the
populator should create a new mention with the following properties (in pseudo-code):

Mention m = new Mention();

m.set(nwr:entityType, nwr:entityTypePer);

m.set(nif:anchorOf, "Barak Obama");

m.set(nif:beginIndex, 0);

m.set(nif:endIndex, 11);

m.set(ks:containedIn, newsDocumentIdentifier)

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 43/58

The last line of code establishes a relation between the mention and the news document
from which it has been extracted.

At this point one may suppose that the new mention is ready to be stored into the
KnowledgeStore. That is not completely true, actually, because the mention lacks an iden-
tifier. Concerning identifiers, the KnowledgeStore assumes that resources, mentions and
entities must be provided with their own identifiers, while for axioms and contexts a new
identifier is automatically generated by the KnowledgeStore. Therefore the NAF populator
has to find or assign a proper identifier for each new resource, mention or entity before
storing them in the KnowledgeStore. For resources, the identifier is based on the value
of the attribute nafPublicId contained in the NAF file, attribute that it is assumed to be
uniquely generated. The identifier depends on the type of the resource and it is obtained
as follows:

• for a news document, identifier is the string $PREFIX + "news/" + $nafPublicId

• for a NAF file, identifier is the string $PREFIX + "naf/" + $nafPublicId

where PREFIX is a URI such as http://www.newreader-project.eu/. The identifier of a
mention is assigned on the basis of the position of its extent in the original news document,
following the guidelines of the RFC 5147 IETF standard51. So the identifier of the mention
described in the example above is the string $PREFIX + "news/" + $nafPublicId +
"#char=0,11".

The processing of a single NAF file is the basic functionality of the NAF populator
and it is the building block for more complex operations along two dimensions: (1) the
quantity and (2) the time. The former is an issue for the initial population, when the
KnowledgeStore is empty and a very large number of NAF files are ready for a massive
population operation. In this case different strategies can be developed to maximize the
throughput of data exchange with the KnowledgeStore and the population speed. The latter
concerns the different situations in which the NAF populator may operate after performing
the initial population: for example new NAF files may be generated by the NLP pipeline
according to the availability of additional news documents. This may happen weekly, daily
or even more times per day. The frequency on which the NAF populator is activated and
by which module, as well as a mechanism to notify when new data are available, has to be
defined within the overall NewsReader system architecture.

5.2 RDF populator

The RDF populator (sources and binaries available online52) takes one or more RDF files
in input, extracts the contained axioms together with their metadata (e.g., provenance)
and contextual information and stores them in a running KnowledgeStore instance. Input
axiom data must be represented as specified in Section 2.1, that is:

51http://tools.ietf.org/html/rfc5147
52http://newsreader.fbk.eu/knowledgestore

NewsReader: ICT-316404 December 18, 2013

http://tools.ietf.org/html/rfc5147
http://newsreader.fbk.eu/knowledgestore

Knowledge store version 1 44/58

• the triples encoding an axiom must be stored in a named graph called module, which
can host triples of multiple axioms sharing the same context and metadata;
• within a special ckr:global graph, the module URI is the subject of metadata triples

that apply to all the axioms in the module;
• contexts must be defined in ckr:global and linked to axioms modules via ckr:hasModule;
• the RDF representation of structured values (e.g., OWL Time intervals, SEM point of

views) of contextual dimensions or metadata properties must be placed in ckr:global.

Blank nodes are unsupported in the KnowledgeStore: if present in input, the RDF
populator automatically replaces them with URIs via skolemization, assuming a file-based
blank node scope53. Contexts URIs in input data are also ignored, as the KnowledgeStore
automatically generates them based on the values of contextual dimensions. More in
details, the RDF populator accepts the following parameters:

• one or more RDF input files, supporting different RDF syntaxes and optional com-
pression; RDF and compression formats are automatically detected based on the file
name (e.g., “input.trig.gz” is parsed as a gzip-compressed TriG file);
• in alternative, RDF data can be read from standard input with explicit specification

of the RDF and compression formats, easing the integration of the RDF populator in
NLP pipelines that connects modules via standard output to standard input piping;
• the URL, username and password to access a running KnowledgeStore instance;
• the default metadata and context to attach to parsed axioms if missing in the input

RDF (optional parameters, no metadata and global context used by default);
• the merge criteria (see Section 3.2.1) for merging axiom metadata with metadata

already stored in the KnowledgeStore for the same axioms (optional parameter, union
of old and new metadata stored by default);
• the error file where to store the RDF representation of axioms rejected by the Knowl-

edgeStore; manual correction and upload of these axioms can be done later (optional
parameter, display of brief error summary with no generation of error file by default);
• a URI to be used in place of ckr:global (optional parameter, default is ckr:global).

Technically, the RDF populator is realized as a cross-platform Java application with a
command line interface. The tool preprocesses the RDF input by sorting its triples, placing
metadata and context information just before the triples that encode axioms; in a second
pass, sorted triples are just scanned and translated into axioms that are streamed to the
KnowledgeStore, keeping track of whether they are successfully stored or not. Sorting is
performed using the sort system utility54, which performs in-memory sort and falls back

53In RDF, blank nodes (bnodes) act as existential variables that denote some entity transiently and
locally (to a file, graph), whereas URIs are persistent, global identifiers. As a consequence, blank nodes
cannot be used as entity identifiers in the KnowledgeStore, also because no retrieval by ID facility could
be supported in that case (they are variables, not identifiers). Skolemization is the process that replaces
existential variables with function symbols; in RDF, it is used to replace blank nodes with auto-generated
URIs that gives a stable identity to the entities denoted with the blank node.

54sort from GNU Core Utilities is available on different platforms, including Windows.

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 45/58

to external disk sort when memory is not enough. This approach addresses the fact that
the order of triples in an RDF file is not given, with triples of an axioms, its context and
metadata possibly scattered throughout the file. The use of sorting avoids the need to fully
load input files in memory, thus enabling the processing of huge RDF files (like the ones
containing the background knowledge described in the next section).

5.3 Acquisition of LOD background knowledge

Background knowledge consists of terminological and assertional data that describes enti-
ties, events, their relations and structure, and that supports NLP processing and the use
case applications. Within NewsReader, background knowledge is collected in WP4 through
the conversion of company datasets and other structured sources to RDF (see Deliver-
able D4.3.1: Structured data to RDF), and within WP6 from Linked Open Data (LOD)
sources. Collected knowledge is then stored in the KnowledgeStore (using the RDF popu-
lator) and used to support NLP processing in WP5 (e.g., for entity and event coreference),
the knowledge crystallization task of WP6 and the decision support tool suite of WP7.

This section reports on the activities for the collection of background knowledge from
LOD sources carried out in WP6. As a first step, described in Section 5.3.1, a subset
of selected LOD datasets and terminological resources were chosen for importing back-
ground knowledge, based on a set of criteria. The next step, described in Section 5.3.2,
consisted in assembling a processing pipeline to extract, combine and augment relevant
data from selected datasets and produce a coherent dataset ready to be imported in the
KnowledgeStore. Statistics about the resulting dataset are presented in Section 5.3.3.

5.3.1 Data selection

The Linked Open Data (LOD) cloud is a collection of machine-readable RDF data about
entities in different domains (persons, organizations, places, . . .) and consisting of over 31
billions of triples in ∼300 datasets interlinked with 504 millions of links55 Although LOD
data presents shallow structure and semantics, the wealth of information conveyed, and the
fact that this information is constantly updated (mainly through community efforts), with
no need of manual intervention of experts, make data in the LOD cloud particularly useful
for NewsReader. However, importing all this data as background knowledge is technically
unfeasible due to its huge size, and also because not all of this data is relevant or can be
exploited by the NLP modules and use case applications of NewsReader. A selection of
data is thus necessary, and can be done based on the following criteria:

• Linkability. It must be possible for every entity gathered from LOD data to be linked
to mentions in a news. This means that the entity URI must be among the URIs that
can be assigned by the named entity disambiguation tool used in the project, which
is currently DBpedia Spotlight56 (see Deliverable D4.2.1: Event detection, version

55Statistics from http://lod-cloud.net/state/ as of September 2011 (last available). The current
number of triples and owl:sameAs links can be considerably greater.

56http://spotlight.dbpedia.org

NewsReader: ICT-316404 December 18, 2013

http://lod-cloud.net/state/
http://spotlight.dbpedia.org

Knowledge store version 1 46/58

1); in alternative, the entity URI should be reachable through a chain of owl:sameAs
links from a supported URI. In practice, this criterion limits the choice to DBpedia
in various languages and to datasets directly or indirectly linked to DBpedia (being
DBpedia the hub of the LOD cloud, there are many datasets linked to it).

• Focus on real world entities data. Collected data should consist of descriptions of real
world entities that are as complete as possible. This rules out data about entities that
denote dynamically computed information (e.g., the results of some Web service, such
as FlickrWrappr57 that provides on-the-fly listings of Flickr images about an entity)
and metadata in general (e.g., the template or the Wikipedia page revisions used for
extracting a certain DBpedia entity).

• Domain relevance. Selected data should be relevant in the domains of interest for
NewsReader. This criterion supports the inclusion of cross-domain datasets and
also geographical datasets, as geographic information is ubiquitous in many do-
mains including the economical-financial ones of NewsReader. Inclusion of specialized,
domain-specific datasets (e.g., MusicBrainz58 for music data) is instead questionable
at this stage of the project, although some of them can be considered later if deemed
useful based on the results of the first news processing activities.

• Quality over quantity. As background knowledge is assumed to be true and can be
possibly used as ground truth when training NLP modules, only high-quality data
must be collected. This rules out datasets known to have data quality issues, and
also suggest the selection of smaller but cleaner versions of a dataset where available.

• Prefer standard vocabularies. Collected data should be expressed according to stan-
dard, properly designed vocabularies (e.g., Dublin Core, the DBpedia OWL ontol-
ogy) that ease data querying and consumption. Data expressed according to auto-
generated vocabularies, often large and noisy, should be avoided (e.g., raw infobox
data from DBpedia).

• TBox inclusion. TBox definitions should be included for every predicate and class
referenced in collected data, so to enable reasoning, and must include mapping axioms
that align those concepts to general vocabularies that can ease the querying of data.

Given the criteria above, the following open licensed and well interconnected datasets
were considered as candidates for partial inclusion in collected background knowledge (size
statistics refer to the versions of these dataset available as of 15/12/2013):

57http://wifo5-03.informatik.uni-mannheim.de/flickrwrappr/
58http://musicbrainz.org/

NewsReader: ICT-316404 December 18, 2013

http://wifo5-03.informatik.uni-mannheim.de/flickrwrappr/
http://musicbrainz.org/

Knowledge store version 1 47/58

dataset DBpedia (http://dbpedia.org/)

description Cross-domain Dataset extracted automatically from the Wikipedia in different
languages (mainly from infoboxes) and representing the hub of the LOD cloud.
It aims at providing as much of factual knowledge in Wikipedia as possible. Raw
infobox data is provided as well as data mapped to a manually crafted DBpedia
OWL ontology. [Auer et al., 2007]

availability RDF dump files; some localizations provide SPARQL and dereferenceable URIs

size 4M entities (ABox instances only), 470M triples EN version; 12.6M entities,
1.98B triples all languages

dataset Freebase (http://www.freebase.com/)

description Cross-domain dataset containing community-contributed interlinked data, struc-
tured according to schema generated and edited by users and linked to DBpedia.
Acquired by Google in July 2010 and used as a source for the Google Knowledge
Graph launched in May 2012. Linked to DBpedia. [Bollacker et al., 2008]

availability single RDF dump file, dereferenceable URIs

size 43M entities, 2.4B facts (1.9B triples in the RDF dump)

dataset YAGO2 (http://www.mpi-inf.mpg.de/yago-naga/yago/)

description Cross-domain knowledge base automatically extracted from Wikipedia, WordNet
and GeoNames. It features a rich type taxonomy (350K classes) and annotation
of facts with confidence value, time and space validity. A 95% accuracy has been
manually measured. Linked to DBpedia. [Hoffart et al., 2013]

availability RDF dump files, dereferenceable URIs

size 120M facts about 10M entities

dataset GeoNames (http://www.geonames.org/)

description Geographic database containing the most significant geographical features of
Earth (e.g., countries, populated places) with georeferencing and containment
relationships. Used as a hub for geographical data. Linked to DBpedia.

availability RDF dump file, dereferenceable URIs

size 8.3M entities, 125M triples

dataset LinkedGeoData (http://linkedgeodata.org)

description Geographic RDF dataset automatically derived from OpenStreetMap and thus
providing information about user-contributed points of interest (POIs) not cov-
ered by GeoNames. Linked to DBpedia and GeoNames. [Stadler et al., 2012]

availability RDF dump files, REsT API

size 1B nodes, 20B triples

NewsReader: ICT-316404 December 18, 2013

http://dbpedia.org/
http://www.freebase.com/
http://www.mpi-inf.mpg.de/yago-naga/yago/
http://www.geonames.org/
http://linkedgeodata.org

Knowledge store version 1 48/58

Among these candidates, for this first extraction of background knowledge we restricted
our focus to the DBpedia datasets in the four languages of the projects: English, Spanish,
Italian and Dutch; we chose the DBpedia 3.9 datasets on the main DBpedia web site for
English and Spanish, and the more complete datasets on localized DBpedia web sites (as of
01/11/2013) for Italian and Dutch. This dataset selection provides a comprehensive core of
background knowledge that is well interconnected and, above all, presents an homogeneous
schema that both eases data consumption by KnowledgeStore clients and also allows us to
initially focus on the merging of ABox data without worrying about TBox heterogeneities.
Starting from these four DBpedia datasets, overall amounting to over 824M triples in 184
(partially overlapping) dump files, we applied the criteria previously listed to narrow down
the selection. As a result, the following parts of the four DBpedia datasets were selected:

• entity types and properties based on the FOAF and DBpedia OWL vocabularies
(files instance types, instance types heuristic, mappingbased properties cleaned and per-
sondata, plus airpedia59 data for IT DBpedia);
• entity names based on Wikipedia titles (file labels);
• entity types based on YAGO2 classes (files yago types and yago taxonomy);
• entity types based on UMBEL classes (file umbel links);
• entity categorization based on Wikipedia categories (files articles categories, cate-

gory labels and skos categories);
• entity categorization based on Wordnet 2.0 synsets (file wordnet links);
• geographic coordinates of location entities (file geo coordinates);
• links to entity images in Wikipedia (file images), with removal of dc:rights copyright

metadata (images are all open licensed);
• links to Wikipedia pages, home pages and other Web pages with additional entities

information (files external links, homepages, wikipedia links); where defined, inverse
foaf:isPrimaryTopicOf links from pages to entities were dropped;
• brief language-dependent textual description of entities (file short abstracts);
• owl:sameAs links among URIs of DBpedia in different languages and among URIs

and IRIs assigned to the same entity60 (files interlanguage links, iri same as uri).

Based on the TBox inclusion criterion, the RDFS/OWL definitions of the following
vocabularies were also selected: DBpedia 3.9 OWL ontology; Dublin Core elements (DC)
and terms (DCTERMS); Friend of a Friend (FOAF) vocabulary; Simple Knowledge Or-
ganization System (SKOS) vocabulary; schema.org61 and UMBEL62 concept definitions;
Bibliographic Ontology (BIBO); WGS84 and GeoRSS63 vocabularies for geographic data.

59The airpedia project (http://www.airpedia.org/) augments DBpedia data with accurate type infor-
mation extracted from Wikipedia pages with machine learning techniques [Palmero Aprosio et al., 2013].

60The newer IRIs supports a broader set of characters and result more readable especially for non-
English languages. As tools may still use URIs rather than IRIs (e.g., for linking a mention to an entity),
we decided to include both kinds of identifiers interlinked with owl:sameAs links.

61http://schema.org/docs/schemaorg.owl
62https://raw.github.com/structureddynamics/UMBEL/master/Ontology/umbel.n3 and file um-

bel reference concepts.n3 in GitHub repository.
63http://www.w3.org/2005/Incubator/geo/XGR-geo/W3C_XGR_Geo_files/geo_2007.owl

NewsReader: ICT-316404 December 18, 2013

http://www.airpedia.org/
http://schema.org/docs/schemaorg.owl
https://raw.github.com/structureddynamics/UMBEL/master/Ontology/umbel.n3
http://www.w3.org/2005/Incubator/geo/XGR-geo/W3C_XGR_Geo_files/geo_2007.owl

Knowledge store version 1 49/58

prefix definitions omitted

SELECT ?name ?surname
WHERE {
 { ?uri1 a dbo:Person } UNION
 { ?uri1 a dbo:Artist } UNION
 ... for all dbo:Person subclasses ...
 { ? uri1 a dbo:Religious}
 ?uri2 foaf:givenName ?name.
 ?uri3 foaf:familyName ?surname.
 { ?uri1 owl:sameAs ?uri2. ?uri2 owl:sameAs ?uri3 } UNION
 { ?uri1 owl:sameAs ?uri2. ?uri3 owl:sameAs ?uri2 } UNION
 { ?uri1 owl:sameAs ?uri3. ?uri2 owl:sameAs ?uri3 } UNION
 { ?uri1 owl:sameAs ?uri3. ?uri3 owl:sameAs ?uri2 } UNION
 { ?uri2 owl:sameAs ?uri1. ?uri2 owl:sameAs ?uri3 } UNION
 { ?uri2 owl:sameAs ?uri1. ?uri3 owl:sameAs ?uri2 } UNION
 { ?uri3 owl:sameAs ?uri1. ?uri2 owl:sameAs ?uri3 } UNION
 { ?uri3 owl:sameAs ?uri1. ?uri3 owl:sameAs ?uri2 }
}

prefix definitions omitted

SELECT ?name ?surname
WHERE {
 ?uri a dbo:Person;
 foaf:givenName ?name;
 foaf:familyName ?surname.
}

(a) (b)

Figure 17: Example of SPARQL query with (a) and without (b) smushing and inference.

5.3.2 Data processing

Selected LOD files cannot be simply “concatenated” to produce the background knowledge
dataset. Data must be filtered on a per-file basis, in order to remove unwanted data.
Filtered data from different dataset must then be smushed64, i.e. merged so that provenance
metadata is preserved, duplicate triples are removed, and each entity identified by multiple
URIs (connected by owl:sameAs links) is given a unique URIs that is used as the subject
of triples describing the entity. Resulting data can then be augmented with (a computable
subset as large as possible of) the inferred triples that derive from the included TBox
definitions, before producing the final dataset.

Smushing and inference materialization are particularly important at this stage of the
project, as they partially alleviate the problems caused by the lack of inference in the
first version of the KnowledgeStore65. Without them, queries have to be written in a way
that consider possible inferences and the effects of owl:sameAs triples if completeness of
query results is desired66, which leads to an explosion of a query complexity, as shown in
Figure 17 for a simple query extracting names and surnames of persons in the background
knowledge. In fact, smushing and inference materialization will also help when inference
will be added to the KnowledgeStore, as they will reduce the load posed on the system for
importing background knowledge.

In order to perform the required data filtering, smushing and inference materialization,
a processing pipeline has been assembled that automatize these tasks based on a configura-
tion file specifying the URLs of the files to process and how to process them. This pipeline
represents an asset that will be exploited (via reconfiguration and possibly extension) later

64http://patterns.dataincubator.org/book/smushing.html
65According to the Project Description of Work, the development of the reasoning services on top of the

KnowledgeStore is scheduled for M15.
66Note that completeness via query rewriting may be theoretically impossible depending on the logical

fragment considered (e.g., RDFS, OWL 2 RL).

NewsReader: ICT-316404 December 18, 2013

http://patterns.dataincubator.org/book/smushing.html

Knowledge store version 1 50/58

in the project to collect additional background knowledge from LOD sources. The pipeline
is organized in four stages described next: download, filtering, merging, analysis.

Download stage Dataset and vocabulary files listed in the pipeline configuration are
download from their source locations (if locally missing or newer), and trigger further
processing in the next stages of the pipeline.

Filtering stage Each downloaded file is parsed, filtered and saved using a common
format (TriG, as it supports named graphs) and compression method (gzip, due to a good
tradeoff between compression ratio and speed). Filtering is performed in a single pass on
a per-triple basis. It allows to drop triples with specific predicates and types configured
on a per-file basis and, for every file, to remove literals not in a project language and to
rewrite blank nodes making them globally unique (this avoid possible clashes when data
from multiple files is merged). Triples in each filtered file are placed inside a named graph
associated to the dataset, so to keep track of provenance in the following processing.

Merging stage This stage merges the filtered files previously generated, performing
smushing and inference materialization and producing the final background knowledge file.
Three passes are required to process and merge filtered files:

• The first pass extracts TBox definitions that are stored in a TBox output file. TBox
definitions are identified by searching for triples having selected properties and classes
from the RDF, RDFS and OWL vocabularies in predicate and object positions.

• The second pass scans filtered files for owl:sameAs links, which are used to build an in-
memory “URI rewriting” data structure used later for assigning a unique, canonical
URI to every entity. The size of the in-memory structure grows linearly with the
number of distinct URIs linked by some owl:sameAs link; 60 bytes per URI has been
measured on average, a number small enough to allow processing hundreds of millions
of owl:sameAs links on a small workstation (16 to 32 GB memory).

• The third pass exploits the in-memory URL rewriting data structure and the TBox
file, augmented with definitions inferred based on RDFS rules, to perform smushing
and materialization of RDFS inferences at the ABox level, generating the resulting
background knowledge file. ABox inference materialization is efficiently done on a
per-triple level thanks to the restriction to RDFS (this would not be possible with
OWL). Removal of duplicates, instead, requires to sort data, which is done using
external merge-sort67 due to the huge size of data involved (the sort utility is used).

67http://en.wikipedia.org/wiki/External_sorting

NewsReader: ICT-316404 December 18, 2013

http://en.wikipedia.org/wiki/External_sorting

Knowledge store version 1 51/58

Table 1: Number of triples per source in produced dataset.

Source rdf:type owl:sameAs ABox (other) TBox Total

DBpedia EN 110 270 306 21 219 244 96 317 680 450 970 228 258 200
DBpedia ES 7 001 275 11 865 956 19 298 294 0 38 165 525
DBpedia IT 8 488 011 11 287 650 18 017 981 0 37 793 642
DBpedia NL 5 354 073 11 315 456 12 707 068 0 29 376 597
misc. vocabularies 273 499 0 378 447 40 274 692 220

All sources 122 075 613 25 552 474 139 543 076 491 244 287 662 407

Analysis stage In this stage, a pass is done on the generated background knowledge file
to collect a different number of statistics (see next section) and to generate a TBox file with
concepts annotated with number of occurrences, which can later be imported in tools such
as Protégé to better understand what is contained in collected background knowledge.

Technically, the pipeline is realized with a Java processing tool and a Python orches-
tration tool specifically developed for the purpose. Both tools will be released as open
source resources together with the pipeline configuration file, thus making the whole pro-
cess repeatable and reconfigurable by anyone. Using these tools and the current pipeline
configuration on a RedHat 6.4 (Linux 2.6) workstation with an Intel(R) Core(TM) i7 CPU, 16
GB RAM and 500 GB disk, 73 files with 3.06 GB of compressed RDF data are downloaded,
for a total of 309M triples; filtering is done in 38 minutes (136K triples/sec on average),
returning 271M triples that are merged in 96 minutes (47K triples/sec); the result consists
of 288M triples that are analyzed in 68 minutes (71K triples/sec).

5.3.3 Result statistics

The first release of LOD background knowledge, resulting from the selection and processing
activities described above, is a dataset of 288M triples about 11.7M distinct entities.68

Tables 1 and 2 provide some statistics about the number of triples and entities in the
produced dataset that were extracted from the different source datasets, that is DBpedia in
the four project languages plus the additional imported TBox vocabularies (considered as
a single dataset for simplicity). The numbers of triples per source dataset are reported in
Table 1, divided among rdf:type triples, owl:sameAs triples, other ABox triples (essentially
expressing entities properties) and TBox triples. The number of entities per source dataset
are reported in Table 2, divided based on the types used in the annotation guidelines
of WP3, i.e.: persons (PER), organizations (ORG), locations (LOC), products (PRO),
financial entities (FIN) and events (EVENT), with OTHER representing entities that could

68Entities in the produced dataset have been counted by selecting distinct URIs appearing as the subject
of some rdf:type statement and having a named OWL class as its object. This broad definition covers both
ABox and TBox concepts, differently from the statistics provided by DBpedia that accounts only for ABox
instances.

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 52/58

Table 2: Number of background knowledge entities per source in produced dataset.

Source PER ORG LOC PRO FIN EVENT OTHER All types

DBpedia EN 2 308 984 684 693 599 792 488 354 777 298 157 5 073 595 9 095 404
DBpedia ES 337 816 102 850 212 462 113 085 482 80 586 1 092 343 1 855 749
DBpedia IT 471 123 108 839 210 965 169 259 507 165 863 1 069 301 2 099 258
DBpedia NL 207 454 76 045 247 639 79 035 337 42 545 1 059 892 1 688 977
TBox vocabularies 0 0 0 0 0 0 27 134 27 134

All sources 2 803 131 791 620 704 221 623 845 895 382 134 6 724 209 11 682 908

not be classified under previous types. 69 In both tables, triples and entities originating
from multiple source datasets are counted in each dataset, thus the values reported in “All
sources” are not the sum of the values reported for the different sources. Similarly, the
categorization among entity types is not exclusive in the data (although it should be),
hence values in “All types” are not the sum of values reported for the different types.

Table 3 provides an overview of the contents of the produced background knowledge
dataset, focusing on entity types and disregarding source datasets. The same entity types
of Table 2 are used, further divided in entity sub-types (e.g., companies or political bodies
for ORGs).70 For each entity type and sub-type, the total numbers of distinct entities and
associated triples are reported, with the average number of rdf:types triples, owl:sameAs
triples, ABox property axioms and distinct ABox predicates per entity also reported (the
higher the latter number, the more rich the description of an entity). Note that TBox
triples are not considered in this table; moreover, an entity classified with multiple types
is considered for each one of these types, hence the values reported in “All entities” are
not the sum of the values reported for the different entity types.

Statistics per source and entity type, as well as detailed statistics about every TBox
type and property that appears in the produced dataset have been computed as part of
the analysis stage, and are distributed on the KnowledgeStore web site in the form of an
annotated statistics ontology.71 This ontology can be imported in tools for ontology editing
and browsing such as Protégé, as shown in Figure 18, and can help in understanding and
using the dataset, e.g., by supporting the construction of SPARQL queries.

69Classification according to the types of the annotation guidelines has been performed on the
basis of the DBpedia types associated to entities using the following mapping: dbo:Person → PER;
dbo:Organisation, dbo:Monastry → ORG; dbo:NaturalPlace, dbo:PopulatedPlace, dbo:ProtectedArea,
dbo:SiteOfSpecialScientificInterest, dbo:WineRegion, dbo:FrenchSettlement, dbo:CelestialBody →
LOC; dbo:Work, dbo:Database, dbo:Device, dbo:Drug, dbo:Flag, dbo:Food, dbo:Language,
dbo:Aircraft, dbo:Automobile, dbo:Locomotive, dbo:Rocket, dbo:Ship, dbo:Train, dbo:SportFacility,
dbo:ArchitecturalStructure, dbo:WorldHeritageSite, dbo:Monument, dbo:SkiArea → PRO; dbo:Currency
→ FIN; dbo:Event, dbo:Holiday, dbo:Award, dbo:Sales, dbo:SportsSeason → EVENT.

70Classification according to sub-types has been also performed based on DBpedia OWL types. The
mapping is straightforward and is omitted for brevity reasons.

71The statistics ontology is distributed in two version: the full version with all concepts (15M triples)
and a shrinked, more manageable version with concepts having more than 100 instances (100K triples).

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 53/58

Table 3: Number of entities, triples and properties per entity type in produced dataset.

Entity type
Total Total Avg. Avg. Avg. Avg.

entities triples rdf:type owl:sameAs properties predicates

PER 2 803 131 105 053 448 20.4 1.8 14.5 8.3
artists 404 177 19 100 547 25.5 2.8 18.2 8.9
military 30 796 2 780 554 49.6 3.3 36.4 20.1
nobles and monarchs 16 130 1 387 080 38.5 10.8 35.7 17.0
other professionals 24 992 1 758 313 42.5 3.5 23.7 12.0
politicians 54 119 4 048 227 40.7 4.2 29.0 15.7
religious 18 161 1 371 342 41.7 6.0 27.0 13.2
scientists 23 051 1 999 344 48.3 5.8 31.7 15.8
sportsmen 1 190 960 39 586 100 18.8 0.9 12.6 7.5

ORG 791 620 31 121 391 20.4 2.2 15.8 9.1
broadcasters 52 586 3 196 077 29.5 2.4 27.9 17.2
companies 125 375 4 212 340 15.1 2.8 14.9 8.0
educational 58 135 3 367 289 30.9 2.5 23.5 15.5
military 21 113 1 059 334 27.4 2.9 18.9 11.7
music bands 65 846 4 576 673 33.4 4.3 30.8 13.5
political bodies 15 369 549 236 11.6 4.7 18.6 10.1
religious 121 8580 17.3 19.7 33.5 9.2
sport 287 124 6 987 835 14.6 1.1 7.8 5.1
trade union 1489 82 705 36.1 1.9 16.6 9.9

LOC 704 221 36 963 630 18.8 6.9 25.9 15.3
geographical 122 413 5 895 993 21.7 6.0 19.5 12.3
geopolitical 623 307 33 999 783 19.1 7.2 27.2 16.0

PRO 623 845 28 995 543 16.9 2.9 25.8 14.9
art and entertainment 494 391 24 234 133 17.3 2.6 28.1 16.5
drugs 11 767 443 573 14.9 5.6 16.2 9.6
facilities 294 450 15 320 019 24.6 3.5 22.9 14.4
food 7042 209 544 8.9 4.1 15.8 8.6
ict products 37 040 2 046 616 22.1 4.6 27.7 13.8
transportation means 55 740 2 630 498 22.3 3.3 20.7 12.8
weapons 5372 273 936 23.3 6.1 20.7 11.7

FIN 895 51 581 22.6 13.9 20.3 7.0

EVENT 382 134 19 672 686 15.9 4.3 30.4 16.2
elections 6085 152 227 3.9 2.7 17.5 10.5
military conflicts 22 716 1 204 641 17.4 5.8 28.9 12.4
other entertainment 2274 133 388 30.3 3.6 23.8 11.4
sport 112 843 3 049 886 7.5 3.2 15.8 8.0

All entities 11 682 908 258 557 750 10.0 1.8 9.9 5.9

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 54/58

Figure 18: Examples of browsing the statistics ontology in Protégé.

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 55/58

6 Conclusions and Future Work

In this deliverable we documented the first implemented version of the NewsReader Knowl-
edgeStore, a framework enabling to jointly store, manage, retrieve, and semantically query,
both unstructured and structured content. The KnowledgeStore plays a central role in the
NewsReader project: it stores all contents that have to be processed and produced in order
to extract knowledge from news, and it provides a shared data space through which the
various NewsReader components (e.g., NLP pipelines, decision support system) cooperate.

We described the changes performed to the KnowledgeStore Data Model, Interfaces,
and internal Architecture, with respect to the KnowledgeStore design presented in D6.1.
We provided details on the first implementation cycle of the KnowledgeStore, introducing
the KnowledgeStore populators, the tools supporting the filling of the KnowledgeStore with
documents annotated according to NAF, and structured resources available in RDF format.
Furthermore, we described the first collection from LOD sources of background knowledge
to be injected into the KnowledgeStore, detailing the selection process and the processing
pipeline to extract, combine and augment relevant data to produce a coherent dataset.

This first version of the NewsReader KnowledgeStore provides the core infrastructure
functionalities on which the next KnowledgeStore releases will build upon: in particular,
the next release (KnowledgeStore version 2, M24) will include reasoning services on the
semantic content stored within the KnowledgeStore. As among the goals of NewsReader
is to produce scalable results and tools, we are looking forward to deploy and evaluate
the KnowledgeStore capabilities and performances in terms on scalability (KnowledgeStore
version 3, M33) in the communication and compute infrastructure made available within
the context of the Enlighten Your Research 4 (The Big Data Challenge) initiative: from
a functional perspective, we plan to assess the KnowledgeStore capability to (i) store an
overwhelming daily stream of economical and financial contents (news articles and data),
(ii) support a complex NLP pipeline in extracting knowledge from those contents, and
(iii) provide suitable online and offline query capabilities for use in a decision support tool
for professional decision-makers; from a performance point of view, we plan to evaluate the
KnowledgeStore in terms of scalability with respect to data size, query load, and tolerance
to nodes and network failures.

NewsReader: ICT-316404 December 18, 2013

Knowledge store version 1 56/58

References

[Auer et al., 2007] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard
Cyganiak, and Zachary Ives. DBpedia: A nucleus for a web of open data. In Proc. of
6th Int. Semantic Web Conference (ISWC’07) and 2nd Asian Semantic Web Conference
(ASWC’07), Busan, Korea, pages 722–735, Berlin, Heidelberg, 2007. Springer-Verlag.
http://dl.acm.org/citation.cfm?id=1785162.1785216.

[Beckett, 2004] Dave Beckett. RDF/XML syntax specification (revised).
Recommendation, W3C, February 2004. http://www.w3.org/TR/2004/

REC-rdf-syntax-grammar-20040210/.

[Bollacker et al., 2008] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and
Jamie Taylor. Freebase: A collaboratively created graph database for structuring hu-
man knowledge. In Proc. of ACM SIGMOD Int. Conf. on Management of Data (SIG-
MOD’08), pages 1247–1250, New York, NY, USA, 2008. ACM. http://doi.acm.org/

10.1145/1376616.1376746.

[Bozzato and Serafini, 2013] Loris Bozzato and Luciano Serafini. Materialization calculus
for contexts in the semantic web. In Proc. of 26th Int. Workshop on Description Logics,
Ulm, Germany, July 23 - 26, 2013, volume 1014 of CEUR Workshop Proceedings, pages
552–572. CEUR-WS.org, 2013. http://ceur-ws.org/Vol-1014/paper_51.pdf.

[Bryl et al., 2010] Volha Bryl, Claudio Giuliano, Luciano Serafini, and Kateryna Ty-
moshenko. Supporting natural language processing with background knowledge: Coref-
erence resolution case. In Proc. of 9th Int. Semantic Web Conference (ISWC’10),
volume 6496 of LNCS, pages 80–95. Springer, 2010. http://dx.doi.org/10.1007/

978-3-642-17746-0_6.

[Buitelaar and Cimiano, 2008] Paul Buitelaar and Philipp Cimiano, editors. Ontology
Learning and Population: Bridging the Gap between Text and Knowledge, volume 167
of Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, 2008.
http://www.iospress.nl/loadtop/load.php?isbn=9781586038182.

[Carroll et al., 2005] Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler.
Named graphs, provenance and trust. In Proc. of the 14th Int. Conference on World
Wide Web (WWW’05), pages 613–622, New York, NY, USA, 2005. ACM. http://doi.
acm.org/10.1145/1060745.1060835.

[Cattoni et al., 2012] Roldano Cattoni, Francesco Corcoglioniti, Christian Girardi,
Bernardo Magnini, Luciano Serafini, and Roberto Zanoli. The KnowledgeStore: an
entity-based storage system. In Proc. of the 8th Int. Conf. on Language Resources
and Evaluation (LREC’12), Instanbul, Turkey. European Language Resources Asso-
ciation (ELRA), May 2012. http://www.lrec-conf.org/proceedings/lrec2012/

summaries/845.html.

NewsReader: ICT-316404 December 18, 2013

http://dl.acm.org/citation.cfm?id=1785162.1785216
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://doi.acm.org/10.1145/1376616.1376746
http://doi.acm.org/10.1145/1376616.1376746
http://ceur-ws.org/Vol-1014/paper_51.pdf
http://dx.doi.org/10.1007/978-3-642-17746-0_6
http://dx.doi.org/10.1007/978-3-642-17746-0_6
http://www.iospress.nl/loadtop/load.php?isbn=9781586038182
http://doi.acm.org/10.1145/1060745.1060835
http://doi.acm.org/10.1145/1060745.1060835
http://www.lrec-conf.org/proceedings/lrec2012/summaries/845.html
http://www.lrec-conf.org/proceedings/lrec2012/summaries/845.html

Knowledge store version 1 57/58

[Corcoglioniti et al., 2013] Francesco Corcoglioniti, Marco Rospocher, Roldano Cattoni,
Bernardo Magnini, and Luciano Serafini. Interlinking unstructured and structured
knowledge in an integrated framework. In Proc. of 7th IEEE International Conference
on Semantic Computing (ICSC), Irvine, CA, USA, 2013. (to appear).

[De Bruijn and Heymans, 2007] Jos De Bruijn and Stijn Heymans. Logical foundations of
(e)RDF(S): complexity and reasoning. In Proc. of 6th Int. Semantic Web Conference
(ISWC’07) and 2nd Asian Semantic Web Conference (ASWC’07), Busan, Korea, pages
86–99, Berlin, Heidelberg, 2007. Springer-Verlag. http://dl.acm.org/citation.cfm?

id=1785162.1785170.

[Feigenbaum et al., 2013] Lee Feigenbaum, Gregory Todd Williams, Kendall Grant Clark,
and Elias Torres. SPARQL 1.1 protocol. Recommendation, W3C, March 2013. http:

//www.w3.org/TR/2013/REC-sparql11-protocol-20130321/.

[Ferrucci et al., 2010] David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David
Gondek, Aditya A. Kalyanpur, Adam Lally, J. William Murdock, Eric Nyberg, John
Prager, Nico Schlaefer, and Chris Welty. Building Watson: An overview of the DeepQA
Project. AI Magazine, 31(3), 2010. http://www.aaai.org.proxy.lib.sfu.ca/ojs/

index.php/aimagazine/article/view/2303.

[Gantz and Reinsel, 2011] John Gantz and David Reinsel. Extracting value from
chaos. Technical report, IDC Iview, June 2011. http://www.emc.com/collateral/

analyst-reports/idc-extracting-value-from-chaos-ar.pdf.

[Gilbert and Lynch, 2002] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the fea-
sibility of consistent, available, partition-tolerant web services. SIGACT News, 33(2):51–
59, June 2002. http://doi.acm.org/10.1145/564585.564601.

[Hoffart et al., 2011] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, Edwin
Lewis-Kelham, Gerard de Melo, and Gerhard Weikum. YAGO2: exploring and query-
ing world knowledge in time, space, context, and many languages. In Proc. of 20th Int.
Conf. companion on World Wide Web (WWW’11), Hyderabad, India, pages 229–232,
New York, NY, USA, 2011. ACM. http://doi.acm.org/10.1145/1963192.1963296.

[Hoffart et al., 2013] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Ger-
hard Weikum. YAGO2: A spatially and temporally enhanced knowledge base from
Wikipedia. Artificial Intelligence, 194:28–61, 2013. http://dx.doi.org/10.1016/j.

artint.2012.06.001.

[Motik et al., 2009] Boris Motik, Bijan Parsia, and Peter F. Patel-Schneider. OWL
2 Web Ontology Language structural specification and functional-style syn-
tax. Recommendation, W3C, October 2009. http://www.w3.org/TR/2009/

REC-owl2-syntax-20091027/.

NewsReader: ICT-316404 December 18, 2013

http://dl.acm.org/citation.cfm?id=1785162.1785170
http://dl.acm.org/citation.cfm?id=1785162.1785170
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
http://www.aaai.org.proxy.lib.sfu.ca/ojs/index.php/aimagazine/article/view/2303
http://www.aaai.org.proxy.lib.sfu.ca/ojs/index.php/aimagazine/article/view/2303
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/1963192.1963296
http://dx.doi.org/10.1016/j.artint.2012.06.001
http://dx.doi.org/10.1016/j.artint.2012.06.001
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/

Knowledge store version 1 58/58

[Palmero Aprosio et al., 2013] Alessio Palmero Aprosio, Claudio Giuliano, and Alberto
Lavelli. Towards an automatic creation of localized versions of dbpedia. In Proc of 12th
Int. Semantic Web Conference (ISWC’13), volume 8218 of Lecture Notes in Computer
Science, pages 494–509. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.

1007/978-3-642-41335-3_31.

[Patel-Schneider and Franconi, 2012] Peter F. Patel-Schneider and Enrico Franconi. On-
tology constraints in incomplete and complete data. In Proc. of the 11th Int. Semantic
Web Conference (ISWC’12), Boston, MA, pages 444–459, Berlin, Heidelberg, 2012.
Springer-Verlag. http://dx.doi.org/10.1007/978-3-642-35176-1_28.

[Stadler et al., 2012] Claus Stadler, Jens Lehmann, Konrad Höffner, and Sören Auer.
LinkedGeoData: A core for a web of spatial open data. Semantic Web Journal, 3:333–
354, 2012. http://www.semantic-web-journal.net/sites/default/files/swj173_

2.pdf.

[Tao et al., 2010] Jiao Tao, Evren Sirin, Jie Bao, and Deborah L. McGuinness. Integrity
constraints in OWL. In Proc. of 24th Conf. on Artificial Intelligence (AAAI’10), Atlanta,
Georgia, USA. AAAI Press, July 2010. http://www.aaai.org/ocs/index.php/AAAI/

AAAI10/paper/view/1931.

[van Hage et al., 2011] Willem Robert van Hage, Véronique Malaisé, Roxane Segers, Laura
Hollink, and Guus Schreiber. Design and use of the Simple Event Model (SEM). J. Web
Sem., 9(2):128–136, 2011. http://dx.doi.org/10.1016/j.websem.2011.03.003.

NewsReader: ICT-316404 December 18, 2013

http://dx.doi.org/10.1007/978-3-642-41335-3_31
http://dx.doi.org/10.1007/978-3-642-41335-3_31
http://dx.doi.org/10.1007/978-3-642-35176-1_28
http://www.semantic-web-journal.net/sites/default/files/swj173_2.pdf
http://www.semantic-web-journal.net/sites/default/files/swj173_2.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1931
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1931
http://dx.doi.org/10.1016/j.websem.2011.03.003

	Table of Revisions
	1 Introduction
	1.1 The KnowledgeStore Vision
	1.2 Role of the KnowledgeStore in NewsReader

	2 The KnowledgeStore Data Model
	2.1 Data model design
	2.2 Data model configuration for NewsReader

	3 The KnowledgeStore Interfaces
	3.1 API Design Criteria
	3.2 API Operations and Endpoints
	3.2.1 CRUD Endpoint
	3.2.2 SPARQL Endpoint

	4 The KnowledgeStore Architecture and Implementation
	4.1 Architecture
	4.1.1 HBase & Hadoop
	4.1.2 Virtuoso
	4.1.3 Frontend Server

	4.2 Implementation
	4.2.1 Software development
	4.2.2 Deployment environments

	5 The KnowledgeStore Population
	5.1 NAF populator
	5.2 RDF populator
	5.3 Acquisition of LOD background knowledge
	5.3.1 Data selection
	5.3.2 Data processing
	5.3.3 Result statistics

	6 Conclusions and Future Work

