
Knowledge store design
Deliverable D6.1

Version FINAL

Authors: Roldano Cattoni1, Francesco Corcoglioniti1, Bernardo Magnini1, Marco
Rospocher1, Luciano Serafini1

Affiliation: (1) FBK

Building structured event indexes of large volumes of financial and economic
data for decision making

ICT 316404

Knowledge store design 2/61

Grant Agreement No. 316404
Project Acronym NEWSREADER
Project Full Title Building structured event indexes of

large volumes of financial and economic
data for decision making.

Funding Scheme FP7-ICT-2011-8
Project Website http://www.newsreader-project.eu/

Project Coordinator

Prof. dr. Piek T.J.M. Vossen
VU University Amsterdam
Tel. + 31 (0) 20 5986466
Fax. + 31 (0) 20 5986500
Email: piek.vossen@vu.nl

Document Number Deliverable D6.1
Status & Version FINAL
Contractual Date of Delivery June 2013
Actual Date of Delivery July 16, 2013
Type Report
Security (distribution level) Public
Number of Pages 61
WP Contributing to the Deliverable WP6
WP Responsible FBK
EC Project Officer Sophie Reig
Authors: Roldano Cattoni1, Francesco Corcoglioniti1, Bernardo Magnini1, Marco
Rospocher1, Luciano Serafini1

Affiliation: (1) FBK
Keywords: knowledge store, unstructured content, mentions, entities
Abstract: Despite the widespread diffusion of structured data sources and the
public acclaim of the Linked Open Data initiative, a preponderant amount of in-
formation remains nowadays available only in unstructured form, both on the Web
and within organizations. While different in form, structured and unstructured con-
tents speak about the very same entities of the world, their properties and relations;
still, frameworks for their seamless integration are lacking. In this deliverable we
describe the design of the KnowledgeStore, a scalable, fault-tolerant, and Semantic
Web grounded storage system to jointly store, manage, retrieve, and semantically
query, both structured and unstructured data. The KnowledgeStore plays a central
role in the NewsReader project: it stores all contents that have to be processed and
produced in order to extract knowledge from news, and it provides a shared data
space through which NewsReader components cooperate.

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 3/61

Table of Revisions

Version Date Description and reason By Affected
sections

0.1 30 April 2013 Draft of Deliverable Skeleton Marco Rospocher

0.2 9 May 2013 Refinement of the Deliverable
Skeleton

Francesco
Corcoglioniti

0.3 20 May 2013 First Draft of Introduction Marco Rospocher 1

0.4 22 May 2013 First Draft of Related Work,
Architecture, Data Model

Marco Rospocher,
Roldano Cattoni,
Francesco
Corcoglioniti

2,4,5

0.5 23 May 2013 Revision of drafted parts Marco Rospocher,
Roldano Cattoni,
Francesco
Corcoglioniti,
Bernardo Magnini,
Luciano Serafini

1,2,4,5

0.6 28 May 2013 Added first draft of Interfaces Marco Rospocher 3

0.7 28 May 2013 Revision of Interfaces Roldano Cattoni,
Francesco
Corcoglioniti

3

0.8 03 June 2013 Revision of Interfaces, Architecture,
Data Model. Draft of Appendixes

Francesco
Corcoglioniti

2,3,4,A,B,C

0.9 03 June 2013 Revision of Interfaces, Architecture Roldano Cattoni,
Bernardo Magnini,
Luciano Serafini

3,4

1.0 11 June 2013 Revision of Related Work,
Interfaces, Architecture,

Marco Rospocher 3,4,5

1.1 14 June 2013 Revision of Data Model, Interfaces -
Added Section 5.2

Francesco
Corcoglioniti

2,3,5.2

1.2 17 June 2013 Revision of whole document - Sent
for internal review

Marco Rospocher All

1.3 01 July 2013 Revision of Data Model, and
appendixes

Francesco
Corcoglioniti

2,A,B,C

1.4 01 July 2013 Revision of Data Model, and
appendixes

Marco Rospocher All

07 July 2013 Internal Review of Section 1 and 2 German Rigau 1,2

1.5 08 July 2013 Revision according to the internal
review comments

Marco Rospocher 1,2

13 July 2013 Internal Review of Section 3, 4 and 5 German Rigau 3, 4, 5

1.6 16 July 2013 Revision according to the internal
review comments

Francesco
Corcoglioniti,
Roldano Cattoni

3, 4, 5

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 4/61

Executive Summary

This document presents the design of the NewsReader KnowledgeStore, an infrastructure
for storing and reasoning about the events extracted from news, developed within the
European FP7-ICT-316404 “Building structured event indexes of large volumes of financial
and economic data for decision making (NewsReader)” project. The contributions presented
are the results of the activities performed in Task T6.1 (KnowledgeStore internal structure)
of Work Package WP6 (KnowledgeStore).

First, we introduce the idea behind the KnowledgeStore, motivating the organization of
its content and presenting some examples of applications that can exploit such framework.
We also highlight the key role of the KnowledgeStore in achieving the challenging goals of
the NewsReader project.

We detail the design aspects of the KnowledgeStore, starting with a description of how
unstructured (e.g., news documents) and structured (e.g., Semantic Web resources) are
stored, together and in an integrated manner, within the same repository (the Knowledge-
Store data model). We then discuss how external modules may interact with the Knowl-
edgeStore (the KnowledgeStore interfaces), presenting the abstract definition and rationale
of the operations through which these modules can access and manipulate the content
stored in the KnowledgeStore. We also detail the internal component organization of the
KnowledgeStore (the KnowledgeStore architecture), discussing the technological choices we
made.

We comment the position the KnowledgeStore with respect to other state of the art
contributions for the integrated and interlinked storage of unstructured and structured
content, and we conclude with an overview of the KnowledgeStore implementation plan
and some ideas for evaluating the KnowledgeStore contribution.

The contributions here presented will also appear in the proceedings of the 7th IEEE
International Conference on Semantic Computing (ICSC2013) [Rospocher et al., 2013].

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 5/61

Contents

Table of Revisions 3

1 Introduction 7
1.1 The KnowledgeStore Vision . 7
1.2 Role of the KnowledgeStore in NewsReader 10
1.3 Content of this Deliverable . 12

2 The KnowledgeStore Data Model 13
2.1 Data model design . 13
2.2 Data model configuration for NewsReader 15

3 The KnowledgeStore Interfaces 19
3.1 API Design Criteria . 19
3.2 Operations Categories . 21

3.2.1 Intra-layer Operations . 22
3.2.2 Inter-layer Operations . 23

4 The KnowledgeStore Architecture 25
4.1 Architectural overview . 25
4.2 KnowledgeStore internal architecture . 26

4.2.1 The HBase & Hadoop component 27
4.2.2 The Triple Store . 29
4.2.3 The Frontend . 31

5 Related Work 32
5.1 Related approaches . 32
5.2 Related technologies . 33

6 Conclusions and Future Work 36

A API Specification 41
A.1 Intra-layer Operations . 41

A.1.1 Operations on Resources Representations 41
A.1.2 CRUD Operations . 42
A.1.3 SPARQL Access to Statements . 49

A.2 Inter-layer Operations . 49

B Core Data Model Ontology 51

C NewsReader Data Model Ontology 54

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 6/61

List of Figures

1 KnowledgeStore Content. 8
2 The role of the KnowledgeStore in NewsReader. 11
3 KnowledgeStore data model. 14
4 NewsReader data model. 16
5 KnowledgeStore architecture. 26
6 Statement representation in HBase & Hadoop and Triple Store components. 28
7 Examples of inference rules . 30

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 7/61

1 Introduction

This document describes the KnowledgeStore, the infrastructure that will be used in News-
Reader to store, retrieve, and reason about the knowledge extracted from financial and
economical news.

1.1 The KnowledgeStore Vision

The rate of growth of digital data and information is nowadays continuously increasing.
While the recent advances in Semantic Web Technologies (e.g., the Linked Data1 initiative),
have favoured the release of large amount of data and information in structured machine-
processable form (e.g., RDF dataset repositories), a huge amount of content is still available
and distributed through websites, company internal Content Management System (CMS)
and repositories, in an unstructured form, for instance as textual document, web pages,
and multimedia material (e.g., photos, diagrams, videos). Indeed, as observed in [Gantz
and Reinsel, 2011], unstructured data accounts for more than 90% of the digital universe.

Although bearing a clear dichotomy for what concern their form, the content of struc-
tured and unstructured resources is far from being separated: they both speak about
entities of the world (e.g., persons, organizations, locations, events), their properties, and
relations among them. Indeed, coinciding, contradictory, and complementary facts about
these entities could be available in structured form, unstructured form, or both. There-
fore, partially focusing on the content distributed in only one of these two forms may not
be appropriate, as complete knowledge is a requirement for many applications, especially
in situations where users have to make (potentially critical) decisions. Moreover, some
applications inherently require considering both types of content: an example is question
answering [Ferrucci et al., 2010], where often a user query can only be answered by com-
bining information in structured and unstructured sources.

Despite the last decades achievements in natural language and multimedia processing,
now supporting large scale extraction of knowledge about entities of the world from un-
structured digital material, frameworks enabling the seamless integration and linking of
knowledge coming both from structured and unstructured content are still lacking.

In this document we describe the design of the KnowledgeStore, a framework that con-
tributes to bridge the unstructured and structured worlds, enabling to jointly store, man-
age, retrieve, and semantically query, both typologies of contents. Figure 1 shows schemat-
ically how the KnowledgeStore manages these contents in its three representation layers.
On the one hand (and similarly to a file system) the resource layer stores unstructured
content in the form of resources (e.g., news articles, multimedia files), each having a textual
or binary representation and some descriptive metadata. Information stored in this level is
typically noisy, ambiguous, and redundant, with the same piece of information potentially
represented in different ways in multiple resources. On the other hand, the entity layer is
the home of structured content, that, based on Knowledge Representation and Semantic

1http://linkeddata.org

NewsReader: ICT-316404 July 16, 2013

http://linkeddata.org

Knowledge store design 8/61

Resource Layer

dbpedia:United_Nations rdf:type yago:PoliticalSystems

dbpedia:United_Nations rdfs:label "United Nations"@en

dbpedia:United_Nations foaf:homepage <http://www.un.org/>

dbpedia:United_Nations

Entity Layer Mention Layer

Indonesia Hit By Earthquake

A United Nations assessment team
was dispatched to the province after
two quakes, measuring 7.6 and 7.4,
struck west of Manokwari Jan. 4. At
least five people were killed, 250
others injured and more than 800
homes destroyed by those temblors,
according to the UN.

Resource Mentionpart of Entity Statement

Entity Mention

Relation Mention

arguments

refers to

described by

extracted from

. . .

Figure 1: KnowledgeStore Content.

Web best practices, consists of 〈subject, predicate, object〉 statements, which describe the
entities of the world (e.g., persons, locations, events), and for which additional metadata
is kept to track their provenance and to denote the formal contexts where they hold (e.g.,
in terms of time, space, point of view). Differently from the resource layer, the entity layer
aims at providing a formal and concise representation of the world, abstracting from the
many ways it can be encoded in natural language or in multimedia, and thus allowing the
use of automated reasoning to derive new statements from asserted ones [De Bruijn and
Heymans, 2007]. Between the aforementioned two layers is the mention layer. It indexes
mentions, i.e., snippets of resources (e.g., some characters in a text document, some pixels
in an image) that denote something of interest, such as a an entity or a statement of the
entity layer. Mentions can be automatically extracted by natural language and multimedia
processing tools, that can enrich them with additional attributes about how they denote
their referent (e.g., with which name, qualifiers, “sentiment”). Far from being simple point-
ers, mentions present both unstructured and structured facets (respectively snippet and
attributes) not available in the resource and entity layers alone, and are thus a valuable
source of information on their own.

Thanks to the explicit representation and alignment of information at different levels,
from unstructured to structured knowledge, the KnowledgeStore enables the development
of enhanced applications, and favour the design and empirical investigation of several
information processing tasks otherwise difficult to experiment with. To name a few:

• Decision support. Effective decision making support could be provided by exploit-

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 9/61

ing the possibility to semantically query the content of the KnowledgeStore with re-
quests that combine structured and unstructured content (a.k.a. mixed queries), like
e.g., retrieve all the documents mentioning that person Barack Obama participated
to a sport event—fulfilling this request involves: (i) to reason in the structured part
about which events “Barack Obama” participated that are of type “sport event”, and
identify the corresponding participation statements; (ii) to exploit the links to the
mentions those statements have been extracted from; and (iii) to exploit the linking
between those mentions and the resources containing them [Hoffart et al., 2011].

• Coreference resolution. The KnowledgeStore favours the implementation and evalua-
tion of tools which exploit available structured knowledge to improve the performance
of coreference resolution tasks (i.e., identifying that two mentions refer to the same
entity of the world), as shown in [Bryl et al., 2010], especially in cross-document /
cross-resource settings.

• Ontology population. Finally, the joint storage of extracted knowledge, the resources
it derives from, and extraction metadata provides an ideal scenario for developing,
training, and evaluating ontology population [Buitelaar and Cimiano, 2008] tech-
niques. In particular, the KnowledgeStore data model favours the exploration of a
number of computational strategies for knowledge fusion, i.e., the merging of possibly
contradicting information extracted from different sources, and knowledge crystalliza-
tion, i.e., the process through which information from a stream of multimedia docu-
ments is automatically extracted, compared, and finally integrated into background
knowledge, taking into consideration how many times a piece of information has been
extracted, where it has been extracted from and how well it fits / is consistent with
pre-existing background knowledge.

Given the KnowledgeStore ambition to cope with a huge quantity of data and resources
(potentially in the range of billions of documents), as required by today / next future
applications, the development of the KnowledgeStore vision is necessarily driven by scala-
bility aspects: performances in storing, accessing, and querying the KnowledgeStore have
to gracefully scale with respect to the size of managed content. For this reason the imple-
mentation of the KnowledgeStore is based on technologies compliant with the deployment
in distributed hardware settings, like clusters and cloud computing.

The idea behind the KnowledgeStore was preliminary investigated in [Cattoni et al.,
2012] and tested in the scope of the LiveMemories project2. However, we highly revised the
design of the previous version, introducing significant enhancements: the new version of the
KnowledgeStore, currently under implementation, supports (i) the storing of and reasoning
on events and related information, such as event relations (the previous version was limited
to mentions and entities referring to persons, organizations, geo-political entities, and
locations), (ii) scaling on a significantly larger collection of resources (potentially, billions
of documents versus a few hundreds of thousands), and (iii) a semantic query mechanism
over its content (no reasoning services was previously offered).

2http://www.livememories.org/

NewsReader: ICT-316404 July 16, 2013

http://www.livememories.org/

Knowledge store design 10/61

1.2 Role of the KnowledgeStore in NewsReader

The goal of the NewsReader Project3 is to process daily economical and financial news
in order to extract events (i.e., what happened to whom, when and where – e.g., “The
Black Tuesday, on 24th of October 1929, when United States stock market lost 11% of its
value”), and to organize these events in coherent narrative stories, combining new events
with past events and background information. These stories are then offered to professional
decision-makers, that by means of visual interfaces and interaction mechanisms will be
able to explore them, exploiting their explanatory power and their systematic structural
implications, to make well-informed decisions. Achieving these challenging goals requires:

• to process document resources, detecting mentions of events, event participants (e.g.,
persons, organizations), locations, time expressions, and so on;
• to link extracted mentions with entities, either previously extracted or available in

some structured domain source, and coreferring mentions of the same entity;
• to complete entity descriptions by complementing extracted mention information

with available structured knowledge (e.g., DBPedia4, corporate databases);
• to interrelate entities (events and their participants, in particular) to support the

construction of narrative stories;
• to reason over events to check consistency, completeness, factuality and relevance;
• to store all this huge quantity of information (on resources, mentions, entities) in a

scalable way, enabling efficient retrieval and intelligent queries;
• to effectively offer narrative stories to decision makers.

A framework like the KnowledgeStore can effectively contribute to address such kind of
requirements5.

First, the KnowledgeStore allows to store in its three interconnected layers all the ty-
pologies of content that have to be processed and produced when dealing with unstructured
content and structured knowledge:

• the resource layer stores the unstructured financial news and their annotations;

• the mention layer identifies fragments of news denoting entities (e.g., a take-over
event), relation between entity mentions (e.g., event participation), numerical quan-
tities (e.g., a share price);

• the entity layer 6 stores the structured descriptions of those entities extracted from
resources and merged with available structured knowledge (e.g., Linked Data sources,
corporate databases).

3http://www.newsreader-project.eu/
4http://dbpedia.org/
5Note that such requirements, though arisen from the specific application scenario considered within

the NewsReader project, are quite typical in many application contexts where enhanced applications (e.g.,
decision support systems, information retrieval systems, semantic search engines, query answering appli-
cations) have to deal with both unstructured content and structured knowledge.

6In the current status of affairs, an ad-hoc layer to explicitly represent narrative stories is not foreseen.
Narrative stories will be represented within the entity layer, by means of entities and statements.

NewsReader: ICT-316404 July 16, 2013

http://www.newsreader-project.eu/
http://dbpedia.org/

Knowledge store design 11/61

Knowledge

Store Resource

Layer

Mention

Layer

Entity

Layer

write annotations

Resource processors
→ tokenization & lemmatization

→ part of speech tagging,
→ word sense disambiguation
→ parsing (dep./consituency)

→ keyphrase extraction

read resources

WP4
Mention processors
→ named entity recognition,

→ event recognition,
→ semantic role labelling,

→ Tlink / Clink / Slink tagging,
→ entity linking (wikification…)

write
mentions

read
annotations
& mentions

WP4

Entity processors
→ entity & event coreference,

→ event chaining,
→ event significance & rel.

→ narrative graph extraction,
→ crystallization read

mentions &
background
knowledge write entities

& statements

WP5 / WP6

store background
knowledge

LexisNexis

ScraperWiki

other

Resource
populators

. . .
knowledge
populators

store
news

WP6 & others

Decision
Support System

(mixed) queries

WP7

Figure 2: The role of the KnowledgeStore in NewsReader.

Second, as shown in Figure 2, the KnowledgeStore acts as a shared data space supporting
the interaction of the several NewsReader modules and tools envisaged according to the
aforementioned requirements: modules retrieve their input data from the KnowledgeStore,
and store the results of their processing back in it, so that they can be picked up by other
modules. Modules can be roughly classified in five categories:

• Resource and knowledge populators. These modules enable the bulk loading of struc-
tured and unstructured contents in the KnowledgeStore.

• Resource Processors. These modules, as part of WP4 activities, work at the resource
layer, and take care of performing a pre-processing of the text document, enriching
it with linguistic annotations.

• Mention Processors. These modules, as part of WP4 activities, work at the resource
and mention layers, exploiting the results of resource processors to instantiate men-
tions via named entity and event recognition, semantic role labelling, and so on.

• Entity Processors. These modules, as part of WP5 and WP6 activities, work at the
mention and entity layers, exploiting the results of mention processors to instantiate,
link, or enrich entities performing tasks such as coreference and knowledge fusion.

• Decision Support System. Finally, as part of WP7 activities, the decision support
system queries the KnowledgeStore— mainly the entity layer (although queries may

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 12/61

also requires to retrieve documents and mentions)—to obtain the information about
events and narrative stories to be shown to users.

The KnowledgeStore provides to external modules different typologies of access to its
content: create, read, update, delete (CRUD) operations on resource/mention/entity/s-
tatement, and retrieve/query mechanisms. Due to the goals of the NewsReader project,
the development of the KnowledgeStore focuses on providing efficient retrieve/query mech-
anisms, while a basic implementation of the CRUD operations is offered, allowing the
external modules to have full access (and control) on the content of the KnowledgeStore7.

NewsReader will be tested on economic and financial news and on events relevant for
political and financial decision-makers. Concerning the data and information volume as-
pect, this is a quite significant domain. Roughly 25% of the news deals with finance and
economy, and a large international information broker such as the project partner Lexis-
Nexis, typically handles about 2 million news each day, cumulating to an impressive 25
billion documents archive spanning several decades. As suggested by these numbers, the
project context sets an ideal test bed to assess the scalability of the KnowledgeStore.

1.3 Content of this Deliverable

The deliverable is organized as follows. In Section 2 we present in details the Knowledge-
Store data model, highlighting both its configurable, cross-domain design and its current
configuration for NewsReader. In Section 3 we illustrate how the other NewsReader mod-
ules can interact with the KnowledgeStore, detailing in particular the type of (semantic)
requests they can submit to it, while in Section 4 we describe the KnowledgeStore architec-
ture, presenting each module composing the framework and the physical implementation
of the data model. In Section 5 we briefly overview related state-of-the-art approaches and
technologies. Section 6 concludes with some final remarks.

Before proceeding, we want to remark that this deliverable presents a concrete, yet
initial, proposal for the data model, interfaces and architecture of the KnowledgeStore.
This because several activities tightly related to the KnowledgeStore are going on at the
time of writing this deliverable, and their outcomes is foreseen at M6 (D1.3: Application
and system requirements - draft; D3.1: Annotation module; D4.1: Resources and linguistic
processors) or later (M9, D4.2.1: Event Detection – version 1; M12, D2.1: System Design
- draft). Therefore, some revision of the design choices here presented may occur, and,
if the case, will be documented in the next WP6 Deliverables (D6.2.1: KnowledgeStore –
version 1; D6.2.2: KnowledgeStore – version 2; D6.2.3: KnowledgeStore – version 3).

7Note that some operations on a single element of the KnowledgeStore content may also impact on other
elements (e.g., deletion of a news in the resource layer affects the mentions associated to that news, which
may affect entities associated to those mentions). The correct handling of these situations is not clear,
and has to be investigated. Therefore the KnowledgeStore does not handle them, although it offers to each
module the basic operations to implement the more appropriate strategy to cope with them.

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 13/61

2 The KnowledgeStore Data Model

The data model defines what information can be stored in the KnowledgeStore, in accor-
dance with the modelling and specification work of WP3, WP4, WP5 and, in particular,
the annotation format (its format and structure will be described in Deliverable D2.1:
System Design - draft, while its content is documented in Deliverable D3.1: Annotation
Module). Therefore, it serves both as a basis for the design of the KnowledgeStore ar-
chitecture and interfaces, and as a shared model that permits linguistic processors, other
processing components and the decision support tool suite to cooperate.

The dependencies to ongoing design activities in other WPs, the need to accommodate
possible changes during the project lifetime, and the envisioned support to a broad range
of applications, make flexibility a key requirement for the KnowledgeStore data model. This
is addressed through the design of a minimalist, configurable data model, centred around
the key concepts of resource, mention and entity described by statements within a context.
The data model is then configured (and re-configured) for use in NewsReader through the
controlled addition of attributes, relations, and resource and mention sub-types.

The remainder of this section provides an high-level description of the KnowledgeStore
data model (Section 2.1) and its configuration for NewsReader (Section 2.2), while their
OWL 2 formal specifications are documented in Appendices B and C. The presentation
is at a conceptual level with no implication on the physical organization of data, which is
addressed as part of Section 4.2.

2.1 Data model design

The KnowledgeStore data model is depicted in the UML class diagram of Figure 3. The
model is organized in the three resource, mention and entity layers and consists of a fixed
part and a configurable one, described next and highlighted in the figure. Resources and
mentions are described using a closed but configurable set of types, attributes and rela-
tions, while entities are described with an open set of statements annotated with metadata
attributes (e.g., for provenance) and holding inside specific contexts. Resources, mentions
and entities are identified by URIs, assigned by the system in the first two cases, and ex-
ternally for entities. Statements are identified by their 〈subject, predicate, object, context〉
components, while contexts are identified both by a set of externally-assigned contextual
metadata (e.g., for time, space, point of view) and by a system-generated URI. By design,
types, attributes and relations are denoted with URIs (hereafter abbreviated using quali-
fied names and a KnowledgeStore default namespace8) and the model is assimilable to an
OWL 2 ontology [Motik et al., 2009]. This allows to encode both the model definition and
its instance data using RDF [Beckett, 2004] (e.g., for interfacing with the KnowledgeStore
or for Linked Data publishing), and to use other Semantic Web technologies to deal with
represented data; in particular, instance data at the entity layer can be encoded using RDF

8http://dkm.fbk.eu/ontologies/knowledgestore#

NewsReader: ICT-316404 July 16, 2013

http://dkm.fbk.eu/ontologies/knowledgestore#

Knowledge store design 14/61

AttrType2

attributes

AttrType3

attributes

SubEnt3

attributes...

SubEnt2

attributes...

SubRes3

attributes

Resource

uri: URI
nie:isStoredAs:
 nfo:FileDataObject
...attributes...

Mention

uri: URI
...attributes...

Entity

uri: URI

Statement

predicate: URI
...attributes...

SubRes2

attributes

SubResource_i

...attributes...

relatedResource_i

SubMention_i

...attributes...

containedIn
1

refersTo
0..1

object
1

subject

1

AttributeType_i

...attributes...

AttributeStatement

value: literal

TypeStatement

type: URI

RelationStatement

extractedFrom0..*

relatedMention_i

nfo:FileDataObject

dc:format: mt:MediaType
nfo:fileName: string
nfo:fileSize: int
nfo:fileCreated: date

Default namespace:

 <http://dkm.fbk.eu/ontologies/knowledgestore#>

Other namespaces:

 dc: <http://purl.org/dc/terms/> Dublin Core terms,

 nie: <http://www.semanticdesktop.org/ontologies/2007/01/19/nie#>

 nfo: <http://www.semanticdesktop.org/ontologies/2007/03/22/nfo#>

 mt: <http://purl.org/NET/mediatypes#>

Context

uri: URI
...attributes...

context1

configurable
part

Figure 3: KnowledgeStore data model.

triples for statements and Named Graphs [Carroll et al., 2005] for contexts.9

Fixed part This part defines the core abstractions and is embodied in the implementa-
tion, so it is kept as small as possible to increase the model flexibility. It includes:

• the Resource, Mention, Entity, Context classes and their uris, set at creation time and
then immutable; entity uris are externally assigned, while the remaining are created
by the system;
• the Statement class with the context relation and the subclasses, attributes and rela-

tions for encoding an entity type (TypeStatement - an entity is of a certain type), an
entity attribute (AttributeStatement - a value associated to an entity) or a relationship
among entities (RelationStatement - a relation between two entities);
• the files storing resource representations and their metadata managed by the system

(nie:isStoredAs attribute and nfo:FileDataObject class);
• relations containedIn and refersTo linking a mention to the containing resource and

the entity it possibly denotes;
• relation extractedFrom linking a statement to the mention(s) it has been extracted

from; this information is relevant both for external users (e.g., decision makers) and
for debugging an information extraction pipeline built on top of the KnowledgeStore.

9The system-generated context URI is used as the graph URI, while contextual metadata is encoded
as additional triples describing the graph URI.

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 15/61

The formal specification of these elements is provided by a KnowledgeStore ontology, doc-
umented in Appendix B, that reuses terms from Dublin Core (dc:*)10, the Nepomuk Infor-
mation Element vocabulary (nie:*)11 and the Nepomuk File Ontology (nfo:*)12. Note that
relevant information such as a mention type, linguistic attributes or position in the con-
taining resource are excluded, due to the fact that a stable, exhaustive and cross-domain
characterization of them cannot be drawn; this information can however be added to the
configurable part and tuned to the representation needs of a particular scenario (such as
the NewsReader one). Moreover, several aspects that can be fully controlled by the system
and thus pertain to the fixed part, such as modification tracking and access control, are
currently not considered; they will be added in the future, should the need arise.

Configurable part This part is specified at configuration time and is assumed to be
available to the system, so that it can tune its storage options for improved efficiency and
can possibly offer additional services (e.g., data validation).13 It includes:

• the subclass hierarchy of Resource and Mention (entities excluded as described via
statements), which are assumed not to be disjoint;
• additional attributes of Resource, Mention, Statement, Context and their subclasses

(objects belonging to multiple subclasses are described using all their combined at-
tributes); note that contextual attributes identify a context similarly to its URI;
• additional relations among resources or among mentions;
• enumerations and classes used as attribute types (similarly to nfo:FileDataObject);
• restrictions on the domain and range of fixed-part relations (not shown in figure).

The configuration exploits the alignment with OWL 2 and is performed by supplying the
system with an OWL 2 ontology that imports the KnowledgeStore ontology and provides the
TBox definitions for each configured element. Mention and resource subclasses, attributes,
relations and auxiliary definitions and restrictions are read from this ontology. The choice
of an OWL 2 ontology avoids to introduce a specific configuration format. Moreover, an
ontology describing the data in the KnowledgeStore has to be produced anyway in case
Linked Data publishing or sharing of instance data on the Semantic Web are desired.

2.2 Data model configuration for NewsReader

The UML class diagram in Figure 4 shows how the data model has been currently config-
ured for NewsReader, based also on the inputs from WP3. The OWL 2 ontology formally

10http://dublincore.org/documents/dcmi-terms/
11http://www.semanticdesktop.org/ontologies/nie/
12http://www.semanticdesktop.org/ontologies/nfo/
13The alternative is represented by a completely free schema, unknown to the system and dynamically

modifiable at runtime. Although more flexible, this solution has been discarded as it would require the use
of a generic, non-optimized storage layout; moreover, a schema must already be available at design time
in order for components to interact, so it makes sense for the KnowledgeStore to benefit from it.

NewsReader: ICT-316404 July 16, 2013

http://dublincore.org/documents/dcmi-terms/
http://www.semanticdesktop.org/ontologies/nie/
http://www.semanticdesktop.org/ontologies/nfo/

Knowledge store design 16/61

ks:Resource

uri: URI
nie:isStoredAs:
 nfo:FileDataObject
rdfs:comment: string

ks:Mention

uri: URI
nif:beginIndex: int
nif:endIndex: int
nif:anchorOf: string
confidence: float
rdfs:comment: string

TimeMention

value: string
timeType: TIMEX3Type

EventMention

eventType: EventType
pred: string
pos: PartOfSpeech
factual: boolean
tense: Tense
aspect: Aspect
vform: VerbForm
polarity: Polarity
mood: Mood
modality: string

ks:containedIn1
ks:Entity

uri: URI

ks:Statement

ks:predicate: URI
crystallized: boolean
dc:source: URI
confidence: float
rdfs:comment: string

ks:subject

1

NAFAnnotation

layers: NAFLayer[*]

annotationOf

1

RelationMention

EntityMention

Participation

semRole: Role
dep: Dependency

CLink

TLink

relType: TLinkType

News

dc:title: string
dc:publisher: dc:Agent
dc:creator: dc:Agent
dc:issued: date
dc:spatial: dc:Location
dc:temporal:
 dc:PeriodOfTime
dc: subject: URI
dc:rights:
 dc:RightsStatement
dc:rightsHolder:
 dc:Agent
dc:language:
 dc:LinguisticSystem
nie: keyword: string[*]
nfo:fileURL: URI
nfo:characterCount: int
nfo:wordCount: int

ks:AttributeStatement

ks:value: literal

ks:RelationStatement

ks:object

1

ks:TypeStatement

ks:type: URI

arg1 1

arg2 1

ks:extractedFrom 0..*

ks:refersTo
0..1

ObjectMention

head: string
syntacticType: SyntacticType
referenceType: ReferenceType
entityType: EntityType

TimeOrEventMention

SLink

ValueMention

valueType: ValueType

arg2 1

arg1 1

arg1 1

arg2 1

arg1 1

arg2

1

nfo:FileDataObject

dc:format: mt:MediaType
nfo:fileName: string
nfo:fileSize: int
nfo:fileCreated: date

dc:PeriodOfTime

begin: datetime
end: datetime

Enumerations (values are URIs): NAFLayer, TLinkType, Role, ValueType,

 Dependency, PartOfSpeech, Tense, Aspect, VerbForm, Polarity, Mood,

 TIMEX3Type, SyntacticType, ReferenceType, EntityType, EventType

External entities referenced by URIs: dc:Agent, dc:Location,

 dc:RightsStatement, dc:LinguisticSystem, mt:MediaType

Default namespace:

 <http://dkm.fbk.eu/ontologies/newsreader#>

ks:Context

uri: URI
sem:accordingTo:
 dc:Agent
sem:hasBegin-
 TimeStamp: date
sem:hasEnd-
 TimeStamp: date

ks:context1

SignalMention

signal0..1

signal0..1

Other namespaces:

 ks: <http://dkm.fbk.eu/ontologies/knowledgestore#>

 dc: <http://purl.org/dc/terms/> Dublin Core terms,

 nie: <http://www.semanticdesktop.org/ontologies/2007/01/19/nie#>

 nfo: <http://www.semanticdesktop.org/ontologies/2007/03/22/nfo#>

 mt: <http://purl.org/NET/mediatypes#>

 nif: <http://nlp2rdf.lod2.eu/schema/string/>

 sem: <http://semanticweb.cs.vu.nl/2009/11/sem/>

Figure 4: NewsReader data model.

encoding the model is reported in Appendix C. In the following, an overview of the re-
sulting model is presented, proceeding along the three resource, mention and entity layers
(note that URIs are hereafter abbreviated using qualified names and a default NewsReader
data model namespace14).

Resource layer The resources of interest in NewsReader are News and NAFAnnotations15.
News are described using metadata from the Dublin Core vocabulary (dc:* attributes),
augmented with additional attributes to express keywords and the source file URL, when

14http://dkm.fbk.eu/ontologies/newsreader#>
15NAF (Newsreader Annotation Format) is the format adopted in the project to augment resources

with structured information extracted by linguistic processors (tokenization, POS tagging, Semantic Role
labelling, and much more). NAF is grounded in KAF (Kyoto Annotation Format) [Bosma et al., 2009].

NewsReader: ICT-316404 July 16, 2013

http://dkm.fbk.eu/ontologies/newsreader#>

Knowledge store design 17/61

available; a character and a word count are also kept for statistical purposes. For NAF
annotations only the list of annotated layers and the link to the annotated news are stored,
as they are useful in accessing and selecting data in the KnowledgeStore, while annotation
data is stored in the resource file.

Mention layer Mentions are represented according to the NAF specification16. The
offset of a mention in a news, as well as its extent, are encoded using attributes from
the NLP Interchange Format (NIF) vocabulary17, thus enabling interoperability with tools
consuming NIF data. A value (in a 0.0−1.0 scale) can be assigned to a mention (attribute
confidence) to represent the confidence of the linguistic processor on the extracted mention.
Four main types of mentions are distinguished:

• Entity mentions denote entities in the domain of discourse (relation refersTo, re-
stricted from fixed part), and are further characterized based on the type of entity.
Object mentions refer to persons, locations, organizations, artefacts and financial
objects (entityType), like e.g. “Barak Obama”, “NASDAQ Index”, “a family”, “500
cars”. The types considered are those proposed in Deliverable D3.1: Annotation
Module. Object mentions are characterized by a mention head, a syntactic type
(e.g., name, nominal or pronoun) and a reference type (e.g., specific referential).
Time mentions are described by their TIMEX3 type and normalized time value.
Event mentions are characterized using a number of NAF attributes: the lemma of
the token conveying the event (pred); the part-of-speech (pos), e.g., adjective, noun
or verb; the factuality of the event (factual); the tense, aspect, mood, verbal form
(vform) of a verbal event; polarity (positive or negative) and modality (e.g. “should”).

• Relation mentions express relations between two entities, whose mentions are identi-
fied by arg1 and arg2 or similar links. Different kinds of relation mentions are stored.
Causal links (CLink) express a causal relation between two events, while temporal
links (TLink) denote a certain temporal relation (relType, e.g., before, include, over-
lap) among two events or time expressions. Subordinate links (SLink) express certain
structural relations among events. Participation mentions denote the participation of
an entity to an event in a certain semantic role (semRole); the dep attribute denotes
the syntactic dependency between the associated entity and event mentions.

• Signal mentions identify pieces of text supporting the existence of a causal or tem-
poral relation, to which they are linked by relations signal.

• Value mentions are numerical expressions used for quantities (cardinal numbers in
general), percentages and monetary expressions.

16The NAF format and structure will be described in Deliverable D2.1: System Design - draft. The
design of its content is documented in Deliverable D3.1: Annotation Module.

17http://nlp2rdf.org/nif-1-0

NewsReader: ICT-316404 July 16, 2013

http://nlp2rdf.org/nif-1-0

Knowledge store design 18/61

Entity layer Different kinds of entities are stored, including persons, organizations geo-
political entities or locations, events, points and intervals in time extracted from text; the
type of entity is conveyed by an rdf:type statement. The context in which a statement
holds in is described and identified in terms of temporal validity (sem:hasBeginTimeStamp
and sem:hasEndTimeStamp) and point of view (sem:accordingTo, e.g., “Financial Times”);
the Simple Event Model (SEM) vocabulary [van Hage et al., 2011] is used to that purpose.
Statement metadata consists of a confidence value (confidence), a provenance indication
(dc:source) and a crystallized flag (crystallized). Confidence is represented on a 0.0 − 1.0
scale and quantifies how reliable is an extracted statement. Provenance is stored for a
background knowledge statement and denotes the external source it has been imported
from (e.g., DBPedia).18 The crystallized flag is set for statements belonging to background
knowledge or assimilated to it after repeated extraction of the conveyed information, ac-
cording to some crystallization algorithm. This algorithm (to be defined as part of WP6
T6.2) will exploit information such as how many mentions a statement has been extracted
from (attribute ks:extractedFrom) and in which time frame, as well as which resources it was
extracted from (e.g., which kind of news) and how reliably; it will also consider pre-existing
background knowledge, in form of TBox constraints a statement has to obey and other
ABox statements in the background knowledge a statement has to be consistent with.

18The adoption of a provenance model to track sources, authority, and tool processing activities, is under
definition at project level at the time of writing this deliverable. The data model here presented will thus
be revised according to the resulting provenance model.

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 19/61

3 The KnowledgeStore Interfaces

The KnowledgeStore presents a number of interfaces through which external clients may
access and manipulate stored data. While the physical realization(s) of these interfaces is
sketched in Section 4.2.3 and depends on the overall NewsReader system design (WP2),
the abstract definition of the API they implement and its rationale are described here. In
particular, Section 3.1 introduces the criteria underlying the design of the API, touching
the challenges that an API for Big Data access in a distributed setting must face. Sec-
tion 3.2 presents an overview of the operations offered by the KnowledgeStore API: two
main categories of operations are described, together with some representative examples.
The full list of operations, instead, is reported in Appendix A.

3.1 API Design Criteria

When designing the API of a complex system such as the KnowledgeStore, a number of
aspects have to be taken into account carefully. Those aspects, and the solutions adopted
for the KnowledgeStore, are discussed in the following.

Operation granularity An API may offer fine-grained, elementary operations operating
on single objects (e.g., a single mention update), as well as coarse-grained operation that
operate on whole sets of objects at a time (e.g., the simultaneous update of all the mentions
of a certain resource). Some API designs allow for a coarse-grained operation even if
redundant because equivalent to a sequence of fine-grained operations, on the basis of user
convenience and/or improved performances, as a single API invocation and the associated
overhead is then involved. For the KnowledgeStore API, the decision is instead to favour
fine-grained operation wherever possible, in order to reduce the perceived API complexity
as well as its implementation and maintenance cost. The overhead of long sequences of
API calls is addressed by proper design at the protocol level (e.g., using techniques such
as request pipelining) rather than introducing redundant coarse-grained operations.

Message exchange pattern One issue is the typology of operations provided by the
KnowledgeStore with respect to the processing time and the amount of data returned.
These two dimensions influence the message exchange pattern between server and client.
The simplest case consists of operations characterized by low latency replies including little
data; in this case the message pattern is the simple request-response: the client issues the
request to the server and waits its reply. When the processing time sensibly increases, the
client cannot block to wait the reply. In this case the adopted pattern is asynchronous and
includes a sequence of steps: first, the client sends the request and immediately receives an
acknowledge from the server that starts the processing. Then, there are two alternatives:
(i) the client asks (possibly frequently) the server about the processing status and gets the
data if finished (asynchronous polling pattern); or (ii) the server notifies the client when
the processing is finished returning also the data (asynchronous notification pattern). With
respect to the data size dimension, if large datasets have to be returned a streaming-based

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 20/61

protocol must be adopted, in order to avoid materializing full dataset in memory. Based on
these considerations, suitable streaming solutions and polling / notification mechanisms
will be selectively applied to API operations to deal, respectively, with the exchange of
large quantities of data and with long running API operations.

Transactional properties Transactions are units of work—either a single operation or
a sequence of operations—to which certain properties are associated, such as the ACID
properties of relational databases: atomicity, consistency, isolation and durability.19 Un-
fortunately, enforcing ACID properties in distributed, scalable systems like the Knowledge-
Store is difficult, inefficient and even theoretically impossible in case system availability
(i.e., the fact every request is answered) is also desired. With this premise, and assuming
the need for partition-tolerance (due to the distributed nature of the system), the CAP
theorem [Gilbert and Lynch, 2002] rules out consistency, and thus ACID in a strict sense.20

The situation asks for a trade-off solution, that for the KnowledgeStore may favour con-
sistency and ACID properties over availability, on the basis that it is deemed preferable
for a client request to fail (in presence of nodes or network failures) rather than returning
stale data. Defining the transactional properties of the KnowledgeStore, however, is difficult
at the time of writing due to a lack of specific requirements and operational experience:
a concrete solution will be developed in the course of the project, given feedbacks from
client modules and the investigation of feasible approaches (such as the use of a distributed
transaction manager). In the first KnowledgeStore release, single API calls will behave in a
transactional way and satisfy ACID properties, as this can greatly simplify writing client
applications. If feasible, further developments may support the explicit delimitation of
transactions by clients through the introduction of begin and end transaction operations.

Data validation The specialized data model (see Section 2.2) defines a number of con-
straints that must be satisfied by data both stored in the system and received in input to
API operations. Essential data validation on input data is performed for each API request,
in order to check the preconditions which are instrumental to the successful completion of
the operation (e.g., presence and validity of object identifier and mandatory attributes).
However, the KnowledgeStore design is compatible with more expressive data validation so-
lutions, that may be implemented in the future by exploiting the OWL 2 roots of the data
model for declaring and validating complex constraints;21 violations of these constraints
may either be reported as warnings or may cause the API request to fail.

19http://en.wikipedia.org/wiki/ACID
20Eventual consistency, i.e., the fact the system will eventually become consistent in absence of inputs, is

permitted; still, this is a weak form of consistency that has to be taken into consideration by applications.
21In this case, the open world assumption (OWA) underlying OWL 2 and its rejection of the unique

name assumption (UNA) must be taken into consideration. Under OWA, missing mandatory information
is inferred rather than being reported as a constraint violation. This is undesirable for data known to
be complete (e.g., certain resource and mention metadata), in which case OWL 2 extensions such as the
ones presented in [Patel-Schneider and Franconi, 2012] or in [Tao et al., 2010] can be adopted. Concerning
UNA, it holds for the objects managed by the KnowledgeStore. By ignoring it, functionality restrictions
over properties of those objects will infer their equivalence, rather than detect a constraint violation. This

NewsReader: ICT-316404 July 16, 2013

http://en.wikipedia.org/wiki/ACID

Knowledge store design 21/61

Security Access to the KnowledgeStore API must be restricted only to authorized clients,
since it allows the modification of stored contents and the retrieval of possibly copyrighted
or otherwise access-restricted information (e.g., news articles accessible only for research
purposes). As it is conceivable for the KnowledgeStore API to be made accessible over
an unprotected channel such as the Internet, suitable technical measures are implemented
at the API level to enforce client authentication and to selectively encrypt the exchange
of sensitive data. Authentication is based on separate username/password credentials for
each authorized client. Authenticated clients may read all the contents stored in the
KnowledgeStore, possibly with some limitations in terms of throughput and number per
day of read operations (in order to enforce a fair use of the system); selected clients are
also granted write permission on all the stored contents.

3.2 Operations Categories

To define the operations to be implemented by the KnowledgeStore, all technical partners
of the consortium were asked to analyse the kind of content their modules were expected
to obtain/inject in it, and how. For this purpose, partners were asked to fill in a template
on a page in the project CMS22 with information on operations they were expecting to use
to interact with the KnowledgeStore. For each operation, they were required to provide:

• a name;
• a description explaining the rationale of the operation;
• the input parameters used to invoked the operation;
• the expected output returned by the operation;
• some examples of usage of the operation;
• possible observations about the operation (e.g., optional attributes, or variants);

The collected operations were then first analysed23 to find commonalities, in order to re-
move duplicates or operations subsumed by other ones. By adopting a generalization
perspective, to favour an easy deployment of the KnowledgeStore in broader application
scenarios that the scope of NewsReader, we also replaced some of the collected opera-
tions with new ones subsuming them. The full list of resulting operations is described
in Appendix A24. Here below, we present a brief overview of these operations, organized
according to the content they are accessing: the content stored in a single layer (intra-layer
operations), and the content stored across multiple layers (inter-layer operations).

can be fixed by automatically declaring objects in the KnowledgeStore as owl:differentFrom each other.
22http://redmine.let.labs.vu.nl/projects/newsreader316404/wiki/KS_Access_Patterns
23The content of the KnowledgeStore operations page on the project CMS may evolve during the lifetime

of the project, as additional operations may arise with the development of new processing modules. The
analysis here described refers to the content of the operations page available on 31.05.2013

24Also available at http://redmine.let.labs.vu.nl/projects/newsreader316404/wiki/

refactored_KS_Access_Patterns

NewsReader: ICT-316404 July 16, 2013

http://redmine.let.labs.vu.nl/projects/newsreader316404/wiki/KS_Access_Patterns
http://redmine.let.labs.vu.nl/projects/newsreader316404/wiki/refactored_KS_Access_Patterns
http://redmine.let.labs.vu.nl/projects/newsreader316404/wiki/refactored_KS_Access_Patterns

Knowledge store design 22/61

3.2.1 Intra-layer Operations

Operations dealing with content stored in a single layer of the KnowledgeStore are further
organized in three main subcategories, as follows.

Operations on resources representations These operations allow manipulating the
representation (i.e., the actual file) stored for a resource in the KnowledgeStore. Two
operations are proposed: storeResourceRepresentation() stores the representation of a
given resource defined in the system, while retrieveResourceRepresentation() enables its
retrieval. As an example, we report the retrieveResourceRepresentation() operation:

name retrieveResourceRepresentation(resource URI) : representation

description retrieve a resource representation, if available

input the URI of the resource (must exist in the KnowledgeStore)

output the representation stored for the resource if any, otherwise an error sig-
nalling either that the URI is unknown or the representation is not available

example retrieve the representation of news nwr:r105

CRUD operations on resources, mentions, entities, statements These operations
refer to the possibility of creating (C), retrieving (R), updating (U) and deleting (D)
elements stored in a single layer of the KnowledgeStore. They are provided for resources,
mentions, entities and statements but not for contexts, which are referenced through their
attributes in uploaded statements and are managed by the system (i.e., created when first
referenced, deleted when no more used). CRUD operations are defined in terms of sets of
objects, in order to enable bulk operations as well as operations on single objects. As an
example, we report the operation for updating stored objects of type Mention:

name updateMentions(condition, mention, merge crit.) : update errors

description updates the mentions satisfying a condition, applying optional merge criteria

input condition selecting the mentions to update;
mention description with the attributes to set;
merge criteria (optional) for (a subset of) the attribute URIs

output for each non-updated mention (e.g., because of failed data validation), its URI
and the error preventing the update

example clear attribute nwr:polarity of all mentions of type = nwr:EventMention

SPARQL access to statements As the entity layer of the KnowledgeStore is grounded
in Knowledge Representation and Semantic Web best practices, a further dedicated ac-
cess mechanism will be provided to access in a flexible way (i.e., by means of queries in
SPARQL25, a standard query language able to retrieve and manipulate data stored in

25http://www.w3.org/wiki/SPARQL

NewsReader: ICT-316404 July 16, 2013

http://www.w3.org/wiki/SPARQL

Knowledge store design 23/61

Semantic Web repositories) entities and statements26 stored in the KnowledgeStore.
Recall that, in our approach, each statement corresponds to a 〈subject, predicate,

object〉 triple within a named graph [Carroll et al., 2005] that encodes the context where
the statement holds; the named graph is uniquely identified by the context URI associated
to the statement (see Section 2.1). Therefore, clients interacting with the KnowledgeStore
through SPARQL have to be aware of this contextual dimension when submitting the
query to the KnowledgeStore, as well as when interpreting the results obtained.

Here below is the description of the sparqlQuery() operation offered by the Knowledge-
Store:27

name sparqlQuery(query, dataset) : query solutions or triples

description evaluates the supplied SPARQL query on indexed statements or a subset of
them identified by the dataset parameter

input the query string, in the SELECT, ASK, CONSTRUCT or DESCRIBE forms;
an optional dataset specification, consisting in a set of default graph URIs
and named graph URIs (see FROM and FROM NAMED clauses)

output on success, either a list of query solution (tuples of variable bindings) for
SELECT and ASK queries, or a set of RDF triples for CONSTRUCT or
DESCRIBE queries

example evaluate the following query:
SELECT ?p ?e FROM nwr:ctx106 WHERE {

?p a foaf:Person .

?e a nwr:SellEvent ; sem:hasActor ?p }
notes results are streamed to the client

Before moving to inter-layer operations, let us note that intra-layer retrieval patterns
dealing with entities/statements may require to exploit some automated reasoning (e.g.,
to retrieve all the events about sports requires to consider also subsumed event types such
as football events).

3.2.2 Inter-layer Operations

These operations refer to the possibility to retrieve some objects by exploiting content
distributed over two or more layers of the KnowledgeStore. Similarly to intra-layer oper-
ations, inter-layer retrieval operations dealing with entities/statements may require some
automated reasoning (e.g., retrieve all the news where a sport event is mentioned). An
example of inter-layer operations is the generalized match() operation, that exploits the
dc:isPartOf and ks:refersTo relations between objects stored in different layers of the Knowl-
edgeStore data model (see Figure 4) and can be used to navigate from resources to mentions
and entities and back:

26To be more precise, as described in 4.2.2, only crystallized and background knowledge statements are
accessible via SPARQL.

27The definition of the sparqlQuery() operation is based on the SPARQL protocol standard [Feigen-
baum et al., 2013]; indeed, the SPARQL protocol can be used to implement this API operation.

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 24/61

name match(condition and output attribute URIs at resource, mention

and entity level) : matching <resource, mention, entity> tuples

description returns a set of 〈resource, mention, entity〉 tuples whose mention occurs in the
resource and refers to the entity, and such that their attributes and statements
satisfy a certain condition; for each tuple, a specified set of output attributes
for each resource, mention and entity element is returned

input a condition over the attributes of matched resources and mentions and over
the statements of matched entities; a list of predicate URIs identifying output
attributes for resources and mentions, and output statements for entities

output an unordered list of matching 〈resource, mention, entity〉 tuples with the out-
put attributes specified

example retrieve uri and dc:title of all the resources of type nwr:News in which
entity dbpedia:Berlin is mentioned

notes results are streamed to the client

It is worth mentioning that while most of the inter-layer operations are tailored to the
specific requirements of NewsReader modules, intra-layer and the match() operations are
general, and easily hold also in application scenarios different from NewsReader. When
considering different application scenarios, an interesting family of operations consists in
the full text search of resources, mentions and entities, whose content (for resources) or
attributes (for all kinds of objects) are matched to keyword queries; an example of such a
query is “return all the news whose content (or title) matches “crisis OR recession”. While
potentially relevant in the general case, full text search has not emerged as a requirement for
NewsReader so far. If necessary, it may be implemented either internally to the Knowledge-
Store, or externally by some dedicated component in the broader scope of the NewsReader
architecture (either inside or outside WP6).28 Given the goal to develop a general purpose
KnowledgeStore component—reusable outside the NewsReader scenario—we plan to further
investigate its extension with full text search during the project lifetime.

We conclude this section with a remark on the expected performances (in terms of
execution time) of the methods implementing the KnowledgeStore operations. While intra-
layer operations can easily scale (e.g., CRUDs), other operations, and in particular the
inter-layer ones, may be potentially affected by performance issues due to their greater
complexity and the (possible) involvement of automated reasoning. To mitigate these
issues, especially for operations requiring a “real-time” response, appropriate techniques
need to be implemented (e.g., denormalization and additional indexes to avoid expensive
joins), as reported in Section 4.2.1.

28The task of such a component would consist in realizing a full text index of (part of) the contents
stored in the KnowledgeStore; to that purpose, scalable open source products such as Elasticsearch (http:
//www.elasticsearch.org/) or Apache Solr (http://lucene.apache.org/solr/) can be adopted. In
case an internal implementation is preferred, these products can be embedded in the KnowledgeStore and
their functionalities accessed by extending the conditions used in the KnowledgeStore API for matching
resources, mentions and entities with a “full text match” primitive.

NewsReader: ICT-316404 July 16, 2013

http://www.elasticsearch.org/
http://www.elasticsearch.org/
http://lucene.apache.org/solr/

Knowledge store design 25/61

4 The KnowledgeStore Architecture

This section presents the KnowledgeStore architecture. From a functional point of view,
the KnowledgeStore is a server whose role within the NewsReader system and whose typical
clients are introduced in Section 4.1. Section 4.2 describes the KnowledgeStore internal
architecture, discussing the design and implementation of the main components for the
storage & retrieval of resources, mentions and entities.

4.1 Architectural overview

As introduced in Section 1 with Figure 2, the KnowledgeStore is a storage server: the other
NewsReader modules are KnowledgeStore clients that utilize the services it exposes to store
and retrieve all the shared contents they need and produce.

It is worth noticing here that the KnowledgeStore is a passive component, without any
active role concerning the orchestration of the other NewsReader modules. The interaction
between the KnowledgeStore and an external orchestrator may occur in two forms (in a
way similar to the “Message exchange pattern” discussed in Section 3.1):

1. by polling : an external orchestrator (or even each processing module) periodically
asks the KnowledgeStore whether there is something new to process (e.g., based on
data-stamps or other metadata attached to the content of the KnowledgeStore);

2. by notification: the external orchestrator is notified by the KnowledgeStore after every
modification and may trigger processing modules; different notification mechanisms
can be adopted. For example, within an orchestration infrastructure such as the
Storm framework29, the KnowledgeStore may interface with it using a notification
approach based on a message queue where to emit modification events (e.g., “resource
added”, “mention modified”, . . .)

The appropriate external orchestration interaction choice will be defined (if needed) in
light of the general NewsReader system architecture (defined in WP2).

From a functional point of view, clients can be classified in two main categories, ac-
cording to the type of operations used to interact with the KnowledgeStore: populators
and applications. Populators are clients whose main purpose is to feed the KnowledgeStore
with new data. They play an important role into the NewsReader system, since they write
into the KnowledgeStore the basic contents needed by applications, such as the Resources
supplied by data providers and the background knowledge for the Entities30. Instead, ap-
plications are clients that (mainly) read data from the KnowledgeStore to accomplish their
tasks. An example of such applications is the decision support system. Some applica-
tions also store the results of their processing back into the KnowledgeStore (e.g., linguistic
processors, tools supporting knowledge crystallization).

29http://storm-project.net/
30More specialized populators can be realized to store more peculiar contents such as custom annotations

provided by specific linguistic processors: in this case linguistic processors providing this specific content
are in charge of proving custom populators.

NewsReader: ICT-316404 July 16, 2013

http://storm-project.net/

Knowledge store design 26/61

Data
Sources

KS Frontend

API implementation over lower layers; replicated for scalability and fault-tolerance

HBase + Hadoop

distributed & replicated for scalability and fault-tolerance

Triple Store

possibly distributed

Mention Resource Entity
Statement
+ Context

RDF Triples +
Named Graphs

Applications

direct access to KS API; e.g.: DSS,
crystallization, linguistic processors

KS API
CRUD, intra-layer & inter-layer operations,
manipulation of resource representations,
SPARQL access

Populators

loading resources, annotations, background
knowledge in specific formats (e.g., RDF, NAF)

Mgmt.
Scripts

start / stop,
backup /

restore, con-
figuration,
statistics

gathering,

Inference
Settings

Deployment
Settings

Data Model
Ontology

S
er

ve
r

(W
P

6)

C
lie

n
ts

 (
W

P
6

&
 o

th
er

 W
P

s)

Configuration

Inference Indexing

Figure 5: KnowledgeStore architecture.

4.2 KnowledgeStore internal architecture

The lower part of figure 5 shows the KnowledgeStore internal architecture. There are three
main components, which are detailed in the remainder of the section:

• the HBase & Hadoop component: this module stores all the information at the re-
source (including physical files), mention and entity levels, providing typical database
services; semantic queries are not supported by this component;
• the Triple Store: crystallized and background knowledge statements are indexed by

this module to provide services supporting reasoning and online semantic query an-
swering, which cannot be easily and efficiently implemented in HBase or Hadoop;
• the KS Frontend: this component provides the API implementation of the Knowl-

edgeStore operations; it exposes the services realized by the two previous modules,
including mixed queries, and it is in charge of global issues (e.g., transactions and
data validation, when implemented).

It is worth noticing here that, for the sake of scalability, the KnowledgeStore is expected
to be deployed on a cluster (potentially in a cloud environment), therefore additional
tools will be implemented to deal with the complexity of such deployment. This includes,
for example, management scripts for operations at system level such as infrastructure
(daemons) start-up & shut-down, data backup & restoration, statistics gathering.

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 27/61

4.2.1 The HBase & Hadoop component

Hadoop31 and HBase32 are frameworks developed by Apache to manage scalability for file
systems and databases, respectively. Distributed computation on multiple nodes, replica-
tion and fault tolerance with respect to single node failure are their key features. HBase
is particular suited for random, real time read/write access to huge quantity of data (such
as big data), when the data’s nature does not require a relational model. HBase belongs
to the NoSQL database family: it provides a mechanism for storage and retrieval of data
that use looser consistency models than traditional relational databases in order to achieve
horizontal scaling and higher availability. It does not (natively) support SQL-like queries.

The KnowledgeStore utilizes the Hadoop distributed file system (DFS) to store resource
representations, that is the physical files such as news documents or custom annotations
provided by the linguistic processors. HBase is used as a database to store the remaining
information, with dedicated tables used to store resource metadata, mentions, contexts and
statements attributes. The last type of object—statement—deserves a special description,
as they are also stored in the Triple Store component, but with different purposes. Full
information about statements is stored in the HBase & Hadoop component, where each
statement is stored as a tuple holding its 〈subject, predicate, object, context〉 components
and statement-level metadata attributes (e.g., provenance and confidence values), as shown
in the top part of Figure 6. This solution allows for a compact representation of statement
metadata and fast lookup by subject among huge collections of statements, but it’s not
enough for supporting SPARQL queries [Seaborne and Harris, 2013], which are instead
provided by the Triple Store component. The latter holds only a subset of the statements
(e.g., only the crystallized ones, so to reduce the load on the Triple Store), and just stores
their 〈subject, predicate, object, context〉 components, with the first three encoded as
an RDF triple and the latter as the named graph containing the triple, as shown in the
bottom part of Figure 6. Statement metadata is not stored, as (i) it is often irrelevant to
user queries, and (ii) its representation would require the use of expensive and impractical
techniques such as RDF reification.33

The design of HBase tables is crucial for achieving good performances. In particular
two aspects are to be taken into account: definition of the row keys, which deeply impacts
on the random access of a table, and denormalization. Concerning row key definition, some
examples of smart row key design that we will adopt in the KnowledgeStore are:

• defining the resource key as dc:date | rdf:type | progressive number34, in order to allow
fast retrieval of resources published in a certain period and possibly of a specific type;
• defining mention key as key(ks:resource) | nif:beginIndex, in order to allow fast retrieval

of all mentions of a given resource (as its key is a prefix of the mention row key);

31http://hadoop.apache.org
32http://hbase.apache.org
33Note that in the KnowledgeStore implementation it is always possible to go back and forth from one

representation to the other, since statements are uniquely identified by their 〈subject, predicate, object,
context〉 components which are stored both in HBase & Hadoop and in the Triple Store.

34Symbol | denotes a concatenation operation

NewsReader: ICT-316404 July 16, 2013

http://hadoop.apache.org
http://hbase.apache.org

Knowledge store design 28/61

subject predicate object context dc:source nwr:confidence

dbpedia:Volkswagen nwr:ceo dbpedia:Martin_Winterkorn nwr:context102 nwr:news104 0.75

subject predicate object context dc:source nwr:confidence

dbpedia:Volkswagen nwr:worldMarketShare "12.2%" nwr:context102 nwr:news104 0.80

context sem:accordingTo sem:hasBeginTimeStamp sem:hasEndTimeStamp

nwr:context102 <http://businessandeconomy.org> 2012-05-30 2012-05-30

Statement table

Context table

HBase & Hadoop statement representation

Triple Store statement representation (TriG format)

nwr:context102 {
 dbpedia:Volkswagen nwr:ceo dbpedia:Martin_Winterkorn .
 dbpedia:Volkswagen nwr:worldMarketShare "12.2%" .
}

ks:global {
 nwr:context102 rdf:type ks:Context .
 nwr:context102 sem:accordingTo <http://businessandeconomy.org> .
 nwr:context102 sem:hasBeginTimeStamp 2012-05-30 .
 nwr:context102 sem:hasEndTimeStamp 2012-05-30 .
}

Statement metadata stored only in HBase

Figure 6: Statement representation in HBase & Hadoop and Triple Store components.

• defining statement key as key(ks:subject) | hash(ks:subject, ks:predicate, ks:object,
ks:context), in order to allow fast retrieval of all the statements for an entity.

Concerning denormalization, that is the replication of partial information on redundant
attributes or tables, in the KnowledgeStore we are considering the following proposals:

• to achieve fast retrieval of the resources mentioning an entity, a redundant “entity-to-
resource” table can be added, whose row key is key(entity) | key(mention) (the latter
including the resource row key);
• to achieve a controlled denormalization a possible approach is to distinguish between

summary and detail attributes of an element, with the assumption that the first
attributes are more frequently accessed than the latter. Summary attributes of an
element are then replicated in the rows of all other elements referring to it, in order
to avoid a join operation each time the referring object is retrieved.

It is worth noting that denormalization impacts on the transactionality of KnowledgeStore
API operations, as it requires multiple HBase calls to update the master copy of data as
well as its replica. While for a single call HBase guarantees transactionality, in case of
multiple HBase calls it must be manually guaranteed by the KnowledgeStore.

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 29/61

Another issue to be taken into account is the implementation of intra- and inter-relations
between layers in HBase. An example of the former is the nwr:annotationOf relation linking
an annotation resource to the news resource it derives from (see Figure 4); an example of
the latter is the relation ks:refersTo connecting a mention to the entity it denotes. From an
implementation point of view, we are considering several approaches with different read,
storage and implementation costs, but all able to store N:N relations with attributes:

• Blob approach. If no indexing of relations is needed, a “blob” field can be added to
one (or both) of the involved HBase rows (e.g., the one for the resource or mention)
where to store all the associated instances. Benefits of this solution include space
efficiency and transactional update of relationships (if accessing a single row).
• Wide table approach. Several HBase columns can be added to one or both of the

involved object, such as mention1, . . . , mentionN . Benefits of this solution include
a transactional modification of related objects and faster updates of related objects
(no need to rewrite unchanged related objects as in the blob approach).
• Long table approach. Given a relation between object1 and object2 (being, e.g., re-

sources or mentions), an HBase table is created whose row key is key(object1) |
key(object2), and whose columns are the attributes of the relation, plus possibly
redundant attributes copied here to speed up read access. Benefits of this solution
include efficient storing of attributes, fast retrieval of instances associated to a given
instance, fast checking of whether a relationship holds, fast updates and reduction of
table number (a single HBase table can be used for multiple relations and even their
inverses if the relation type is included in the row key).

The most suitable option, as well as the actual definition of the HBase tables (number,
structure and row key definition), will be chosen according to the operations presented in
Section 3.2 (and their further refinements as required by the KnowledgeStore clients), and
in particular those used by applications that need almost real time access.

The aspects discussed so far highlight that, especially to guarantee acceptable perfor-
mances, the HBase component of the KnowledgeStore has to be optimized with respect
to the operations required by the NewsReader modules: a change in such operations may
require to re-think and adapt its design and, therefore, implementation.

4.2.2 The Triple Store

Statements are indexed in a triple store so to enable efficient, inference-aware SPARQL-
based query answering. Indexing affects only those statements that satisfy certain config-
urable criteria; this allows, for instance, to exclude from inference non-crystallized state-
ments or statements whose extraction confidence level is below a given threshold.

As remarked in Section 3.2.1 and Section 4.2.1, each statement is stored as a 〈subject,
predicate, object〉 triple within a named graph [Carroll et al., 2005] that encodes the
context where the statement holds. Contexts are defined by additional triples (placed in a
global graph) that define their attributes such as the point of view (sem:accordingTo) and
time validity (sem:hasBeginTimeStamp and sem:hasEndTimeStamp) identifying the context.

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 30/61

?ctx { ?x rdf:type ?c1 }
ks:global { ?c1 rdfs:subClassOf ?c2 }

?ctx { ?x rdf:type ?c2 }

(a) Contextual version of RDFS9

?ctx1 { ?s ?p ?o }
ks:global { ?ctx2 skos:broader ?ctx1 }

?ctx2 { ?s ?p ?o }

(b) Propagation from broader contexts

Figure 7: Examples of inference rules

As anticipated, additional statement metadata are not indexed. By resorting to a triple
store, indexed statements can be easily queried and manipulated using SPARQL both as
a language and access protocol (via so-called SPARQL endpoint offered by triple stores).

Logical inference aims at deriving the additional statements implied by stored data
(ABox) and the ontologies defining its schema (TBox), and making them available as pos-
sible answers to applications and users queries. For instance, if a statement describes dbpe-
dia:Volkswagen as a nwr:PublicCompany and nwr:PublicCompany is a subclass of nwr:Company
in the KnowledgeStore background knowledge, then a query for all companies (e.g., from the
decision support suite) is expected to return dbpedia:Volkswagen as an answer. Inference in
the KnowledgeStore must take into consideration the large amount of data available as well
as its contextual validity: the first aspect asks for a scalable and efficient approach, such as
the off-line pre-materialization of the logical closure that speeds up online query answer-
ing; the second aspect asks for a custom solution, such as a custom set of inference rules,
as no standardized ontological language currently supports reasoning with contextualized
data. Figure 7 shows two examples of such inference rules. Figure 7a shows the contex-
tual extension of rule RDFS9 (the rule responsible for the dbpedia:Volkswagen inference
example reported above), which is applied on a per-context basis using TBox definitions
(the rdfs:subClassOf triples) declared in a global context (ks:global); Figure 7b shows how
statements in a context can be propagated to other contexts if the former is declared (or
found, via inference) to be broader in scope, thus implementing a semantics according to
which statements in a context hold also in narrower contexts. Although logical inference is
a task for the second year of the project (T6.3, starting month 15), it is worth noticing here
that techniques such as closure materialization and rule-based reasoning can be efficiently
implemented in a triple store35, thus further justifying its inclusion in the KnowledgeStore
architecture.

Different triple store implementations offer different performance, scalability and fault-
tolerance characteristics, as well as licenses (e.g., open source vs commercial). The initial
implementation of the KnowledgeStore will be based on the Open Source Edition of the
Virtuoso triple store36, a product showing excellent performances in recent (April 2013)
benchmarks37. The Open Source Edition is limited to a single node deploy, where it can

35Rule-based reasoning is directly supported by some triple stores; if not supported, it can be imple-
mented through the fix-point evaluation of SPARQL queries.

36http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
37http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V7/

NewsReader: ICT-316404 July 16, 2013

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V7/

Knowledge store design 31/61

easily handle a billion of triples.38 Additional scalability and transparent fault tolerance
can be obtained using the (commercial) Enterprise Edition, or moving to alternative open
source clustered triple stores. The use of the OpenRDF Sesame Java API39 will permit the
KnowledgeStore to largely abstract from the adopted triple store implementation40, thus
allowing to change it within (and beyond) the scope of NewsReader.

4.2.3 The Frontend

The Frontend component implements the external API of the KnowledgeStore by dispatch-
ing client requests to the appropriate internal components, and by implementing the nec-
essary streaming, notification and/or polling mechanism discussed in Section 3.1. It also
controls the indexing of statements in the Triple Store component and the triggering of
inference, which are transparently performed each time data is written through the API.

The majority of API operations is forwarded to a single component, either HBase &
Hadoop or the Triple Store; they include all the intra-layer operations as well as several
inter-layer operations. The remaining inter-layer operations are mixed queries which can
be decomposed into one or more semantic queries, targeted at the Triple Store, and one or
more retrieval operation for structured and unstructured data stored in Hadoop & Hbase.
For those operations, it is a responsibility of the Frontend to orchestrate their execution, by
invoking internal components in the proper order, filtering and composing the final result.

Efficient communication protocols and compact data formats are crucial for the API
implementation in the Frontend. Their selection will be performed in the scope of WP2
consistently with the protocols and formats used for communication among other News-
Reader components. Possible choices include (but are not limited to) an HTTP Rest API,
a WSDL+SOAP web service API as well as more efficient binary Remote Procedure Call
(RPC) mechanisms such as Apache Thrift41. While a Rest API is more faithful to the
Web architecture, the remaining approaches may be more efficient and allow for the auto-
matic and cross-language generation of the client and server implementations of the API,
based on an abstract specification written in an Interface Description Language (IDL).
The KnowledgeStore Frontend will also expose the SPARQL endpoint of the Triple Store
component, to provide external clients and (Semantic Web) applications a flexible and
popular access mechanism to indexed statements.

In order to avoid single points of failure, the Frontend component will be replicated,
taking inspiration from the approach utilized by the HBase and Hadoop daemons. A
possible solution to achieve this consists in storing all the system state in HBase and
deploying a suitable locking mechanism (or even a transaction manager, such as OMID42)
to coordinate the access of multiple Frontend instances to such state.

38As a reference, the English DBPedia consists of 400M triples about 3.77M entities, and can be loaded
as background knowledge in the triple store leaving room for a similarly sized volume of crystallized data.

39http://www.openrdf.org/
40Methods for efficient bulk data ingestion are specific to each triple store implementation.
41http://thrift.apache.org/
42https://github.com/yahoo/omid/wiki

NewsReader: ICT-316404 July 16, 2013

http://www.openrdf.org/
http://thrift.apache.org/
https://github.com/yahoo/omid/wiki

Knowledge store design 32/61

5 Related Work

In this section, we review some state-of-the art contributions related to the KnowledgeStore
approach for storing and managing, in an integrated and interlinked way, unstructured
and structured content. We also discuss some state-of-the-art technologies, relevant for
the implementation of the KnowledgeStore architecture.

5.1 Related approaches

The development of frameworks able to store integrated and interlinked unstructured and
structured content was not deeply explored in the literature.

Some investigations were carried out on document repositories based on semantics (e.g.,
[Bang and Eriksson, 2006; Eriksson, 2007]). In these approaches, ontologies are used to
represent domain vocabulary and the document structure, and they are used to annotate
documents and document parts. However, the repository adopting these approaches (i)
emphasise the document structure (e.g. tables, title) rather than document content, (ii)
they do not foresee integrated framework for storing semantic content and unstructured
documents altogether, and (iii) they are typically not meant to be applied in big data
contexts.

Relevant for our work is the contribution presented in [Croset et al., 2010]. The authors
present a framework, based on a RDF triple store, that enables querying the bioinformatics
scientific literature and structured resources at the same time, for evidence of genetic
causes, such as drug targets and disease involvement. Differently from our approach, this
work does not support multimedia content (triple stores currently provide only a limited
support for integrating knowledge with unstructured resource, often consisting in simple
full text search capabilities on RDF literals), and the framework is focused only on name
entities appearing in the unstructured content (i.e., occurrences of events and relation
between entities of the domain were not covered).

Of some relevance are also frameworks for the extraction and storage of knowledge
from Wikipedia, although they focus on providing a knowledge base and not an interlinked
structured / unstructured knowledge source. For instance, in [Hoffart et al., 2013] the
authors of YAGO 2 describe a framework to represent contextualized knowledge extracted
from Wikipedia. Facts, mainly contained in Wikipedia Infoboxes, are enriched with three
additional dimensions (time, location, context), and the whole content (447 million facts,
9.8 million entities) is stored in a relational database (PostgreSQL). However, this frame-
work does not support the interlinking of an entity with (the exact position within) the
document where it is mentioned (the mention layer in our approach), as only the extracted
information is stored.

Although exploited in a different context, dealing with much smaller quantity of content,
also semantic desktop applications (e.g., MOSE [Xiao and Cruz, 2006], Nepomuk [Groza
et al., 2007]43) are partly related with contribution here presented. Semantic desktop

43Nepomuk EU project, http://nepomuk.semanticdesktop.org/

NewsReader: ICT-316404 July 16, 2013

http://nepomuk.semanticdesktop.org/

Knowledge store design 33/61

applications enrich documents archived on the personal PC of a user with annotations
coming from ontologies. However, annotations are attached to the object associated to
the document, and not to its content, thus not fully supporting the interlinking between
unstructured and structured content.

A repository envisioned in [Petrov, 2013] to support large-scale language learning shares
(at a very abstract level) a similar three layers internal organization as the one detailed in
the KnowledgeStore data model.

5.2 Related technologies

The KnowledgeStore combines Hadoop, HBase and the Virtuoso triple store to provide a
platform for the storage of large volumes of interconnected unstructured and structured
data, augmented with inference and semantic query facilities. In the following, some tech-
nological solutions for supporting these tasks are briefly illustrated, motivating the adoption
of certain solutions for the KnowledgeStore implementation.

Storage of structured and unstructured contents If approached separately, storing
structured and unstructured contents can be tackled with several solutions – both open
source and commercial. For the former, NoSQL databases44 are gaining popularity in con-
texts where huge data are to be managed with commodity hardware by means of horizontal
scalability and fault-tolerance. In the case of unstructured data45, the available solutions
focus on systems and/or architecture for analysing and understanding unstructured data
for business applications. In this respect UIMA46 is a framework developed by IBM and
implemented also by Apache47. In the case of the KnowledgeStore, the choice of Hadoop
& HBase is rather natural. First of all they were specifically designed to manage big data
by means of fault tolerance and horizontal scalability. Then, together they present an in-
tegrated solution to save both unstructured and structured data: the former with Hadoop
HDFS, the latter with HBase tables. Moreover, the Hadoop and HBase infrastructure na-
tively supports the map-reduce computational paradigm, a feature that could be exploited
by the NLP processors and other applications (e.g., Decision Support System).

Inference and semantic queries Semantic queries in the KnowledgeStore are expressed
in SPARQL and are evaluated on the RDF data of the entity layer. As any other type
of query, semantic queries require particular indexing of data in order to be evaluated
efficiently; in addition, they may require preprocessing of data in order to take inference into
consideration. The need of data indexing and preprocessing and to deal with the complexity
of SPARQL rules out a custom implementation on top of the data structures already in
place in the HBase part of the KnowledgeStore (implementing SPARQL over HBase or

44http://en.wikipedia.org/wiki/NoSQL
45http://en.wikipedia.org/wiki/Unstructured_data
46http://en.wikipedia.org/wiki/UIMA
47http://uima.apache.org/

NewsReader: ICT-316404 July 16, 2013

http://en.wikipedia.org/wiki/NoSQL
http://en.wikipedia.org/wiki/Unstructured_data
http://en.wikipedia.org/wiki/UIMA
http://uima.apache.org/

Knowledge store design 34/61

other column stores has already been attempted [Khadilkar et al., 2012], but inference
support and mature products are still lacking and their implementation in NewsReader is
out-of-scope). Rather, the requirements suggest the integration in the KnowledgeStore of a
triple store, as it represents the state of the art in managing and querying RDF data.

Different triple store implementations are available, either commercial or open source
and with different support for inference (see next). They can be roughly classified in na-
tive, RDBMS and NoSQL based implementations, based on whether RDF data is stored in
custom indexes (as in Owlim48, Bigdata49, 4Store50), a relational database (as in Virtuoso
and the Oracle Spatial and Graph RDF Semantic Graph51, usually using a 〈subject, predi-
cate, object, context〉 table) or a NoSQL database (e.g., a graph database such as Neo4J52).
While Virtuoso will be used in the current implementation due to good performances and
open source availability, several triple stores are compatible with the KnowledgeStore, and
hence the use of a standard-access API such as Sesame or Jena53 is mandatory.

The distinguishing aspect of semantic queries is their reliance on inference for return-
ing a complete set of answers that consider implicit information not directly encoded in
asserted triples. Two approaches to inference are commonly adopted: forward-chaining
and backward-chaining. Forward-chaining inference is adopted by the majority of triple
stores (e.g., Owlim, Bigdata, Oracle) and is performed offline, augmenting stored data
with all the consequences that can be inferred from it; semantic queries are then evaluated
by simply matching their body with augmented data, without further considering infer-
ence. Backward-chaining inference is performed at query time, by matching each clause
of a query in a way that consider not only asserted data, but also data that can be in-
ferred from it. This is performed either by rewriting the original query (e.g., a query for
nwr:Managers will be rewritten as a query for nwr:Managers, nwr:CEOs, nwr:CTOs, . . . if
the latter are subclasses of the first), or by recursively evaluating its clauses with other
queries that takes all the possible inference paths into consideration. Backward-chaining
is employed in some triple stores (e.g., Virtuoso) as well as in Ontology-Based Data Access
systems [Calvanese et al., 2007], but the latter employ a fixed, relational schema to store
data, backed by a RDBMS, and cannot thus be used to store arbitrary RDF data as needed
in the KnowledgeStore. Forward-chaining appears more convenient for the KnowledgeStore,
as it provides for better query performances. On the down side, it adds overhead in terms
both of space for materialized data and time for data modification operations, which need
to update materialized inferences as well; in particular, forward-chaining copes badly with
data deletion—an infrequent operation in the KnowledgeStore—which implies a retraction
of selected inferences (if determinable) or even their complete recomputation. Neverthe-
less, in the scope of the LarkC research project54 forward-chaining has been shown to scale

48http://www.ontotext.com/owlim
49http://www.bigdata.com/bigdata/blog/
50http://4store.org/
51http://www.oracle.com/technetwork/database-options/spatialandgraph/
52http://www.neo4j.org/
53http://jena.apache.org/
54LarkC (http://www.larkc.eu/) developed a workflow-based approach where different reasoner plu-

NewsReader: ICT-316404 July 16, 2013

http://www.ontotext.com/owlim
http://www.bigdata.com/bigdata/blog/
http://4store.org/
http://www.oracle.com/technetwork/database-options/spatialandgraph/
http://www.neo4j.org/
http://jena.apache.org/
http://www.larkc.eu/

Knowledge store design 35/61

to huge datasets using MapReduce techniques [Urbani et al., 2012].
Independently from a forward vs backward approach, it is worth noting that out-of-the-

box inference in triple stores is usually restricted to standard ontological languages with a
rule-based implementation, such as RDFS, OWL-Horst [ter Horst, 2005] and OWL 2 RL55,
whereas an approach considering also named graphs (i.e., contexts) is required for the
KnowledgeStore (see Section 4.2.2). This limitation is shared also by external DL reasoners
that can be layered over a triple store, and by the scalable reasoners developed in the
LarkC project, such as WebPie [Urbani et al., 2012] and QueryPie [Urbani et al., 2011],
which are restricted to OWL, and the distributed IRIS reasoner56, which is restricted to
RDF without named graphs. A customization of the inference engine within the triple
store (e.g., by reconfiguring its inference rules), or an adaptation of one of the scalable
reasoners cited above is thus required.

gins can be integrated to process large amounts of RDF data in a distributed fashion; both the workflow
engine and several specialized reasoners (either integrable in the workflow or separate) were released.

55http://www.w3.org/TR/owl2-profiles/#OWL_2_RL
56https://github.com/distributed-iris-reasoner/distributed-iris-reasoner

NewsReader: ICT-316404 July 16, 2013

http://www.w3.org/TR/owl2-profiles/#OWL_2_RL
https://github.com/distributed-iris-reasoner/distributed-iris-reasoner

Knowledge store design 36/61

6 Conclusions and Future Work

In this deliverable we documented the design of the KnowledgeStore, a framework enabling
to jointly store, manage, retrieve, and semantically query, both unstructured and struc-
tured content. The KnowledgeStore plays a central role in the NewsReader project: it stores
all contents that have to be processed and produced in order to extract knowledge from
news, and it provides a shared data space through which the various NewsReader compo-
nents (e.g., resource/mention/entity processors, decision support system) cooperate. The
description of the KnowledgeStore design will also appear in the proceedings of the 7th IEEE
International Conference on Semantic Computing (ICSC2013) [Rospocher et al., 2013].

The implementation of the KnowledgeStore according to the presented design criteria
is currently in progress. We are following an iterative development process, so that a first
release of the KnowledgeStore, implementing the core functionalities of the framework, will
be progressively refined and extended with additional features.

During the course of the project, we plan to evaluate the KnowledgeStore from a func-
tional perspective based on its capability to (i) store an overwhelming daily stream of
economical and financial contents (news articles and data), (ii) support a complex NLP
pipeline in extracting knowledge from those contents, and (iii) provide suitable online and
offline query capabilities for use in a decision support tool for professional decision-makers.
In the same context, we also plan to carry out an extensive performance evaluation in terms
of scalability with respect to data size, query load, and tolerance to nodes and network
failures.

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 37/61

References

[Bang and Eriksson, 2006] Magnus Bang and Henrik Eriksson. Towards
document repositories based on semantic documents. In Proc. of
6th Int. Conf. on Knowledge Management and Knowledge Technolo-
gies (I-KNOW’06). Springer, 2006. http://i-know.tugraz.at/papers/

towards-document-repositories-based-on-semantic-documents.

[Beckett, 2004] Dave Beckett. RDF/XML syntax specification (revised).
Recommendation, W3C, February 2004. http://www.w3.org/TR/2004/

REC-rdf-syntax-grammar-20040210/.

[Bosma et al., 2009] Wauter E. Bosma, Piek Vossen, Aitor Soroa, German
Rigau, Maurizio Tesconi, Andrea Marchetti, Monica Monachini, and Carlo
Aliprandi. KAF: a generic semantic annotation format. In Proc. of the
GL2009 Workshop on Semantic Annotation, Pisa, Italy, September 2009.
http://www.researchgate.net/publication/228922488_KAF_a_generic_

semantic_annotation_format/file/9fcfd50a355ff71027.pdf.

[Bryl et al., 2010] Volha Bryl, Claudio Giuliano, Luciano Serafini, and Kateryna Ty-
moshenko. Supporting natural language processing with background knowledge: Coref-
erence resolution case. In Proc. of 9th Int. Semantic Web Conference (ISWC’10),
volume 6496 of LNCS, pages 80–95. Springer, 2010. http://dx.doi.org/10.1007/

978-3-642-17746-0_6.

[Buitelaar and Cimiano, 2008] Paul Buitelaar and Philipp Cimiano, editors. Ontology
Learning and Population: Bridging the Gap between Text and Knowledge, volume 167
of Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, 2008.
http://www.iospress.nl/loadtop/load.php?isbn=9781586038182.

[Calvanese et al., 2007] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Mau-
rizio Lenzerini, Antonella Poggi, and Riccardo Rosati. Ontology-based database access.
In Proc. of the 15th Italian Symposium on Advanced Database Systems (SEBD’07), pages
324–331, June 2007. http://www.dis.uniroma1.it/~poggi/publi/SEBD2007.pdf.

[Carroll et al., 2005] Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler.
Named graphs, provenance and trust. In Proc. of the 14th Int. Conference on World
Wide Web (WWW’05), pages 613–622, New York, NY, USA, 2005. ACM. http://doi.
acm.org/10.1145/1060745.1060835.

[Cattoni et al., 2012] Roldano Cattoni, Francesco Corcoglioniti, Christian Girardi,
Bernardo Magnini, Luciano Serafini, and Roberto Zanoli. The KnowledgeStore: an
entity-based storage system. In Proc. of the 8th Int. Conf. on Language Resources
and Evaluation (LREC’12), Instanbul, Turkey. European Language Resources Asso-
ciation (ELRA), May 2012. http://www.lrec-conf.org/proceedings/lrec2012/

summaries/845.html.

NewsReader: ICT-316404 July 16, 2013

http://i-know.tugraz.at/papers/towards-document-repositories-based-on-semantic-documents
http://i-know.tugraz.at/papers/towards-document-repositories-based-on-semantic-documents
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.researchgate.net/publication/228922488_KAF_a_generic_semantic_annotation_format/file/9fcfd50a355ff71027.pdf
http://www.researchgate.net/publication/228922488_KAF_a_generic_semantic_annotation_format/file/9fcfd50a355ff71027.pdf
http://dx.doi.org/10.1007/978-3-642-17746-0_6
http://dx.doi.org/10.1007/978-3-642-17746-0_6
http://www.iospress.nl/loadtop/load.php?isbn=9781586038182
http://www.dis.uniroma1.it/~poggi/publi/SEBD2007.pdf
http://doi.acm.org/10.1145/1060745.1060835
http://doi.acm.org/10.1145/1060745.1060835
http://www.lrec-conf.org/proceedings/lrec2012/summaries/845.html
http://www.lrec-conf.org/proceedings/lrec2012/summaries/845.html

Knowledge store design 38/61

[Croset et al., 2010] Samuel Croset, Christoph Grabmüller, Chen Li, Silvestras Kavali-
auskas, and Dietrich Rebholz-Schuhmann. The CALBC RDF triple store: Retrieval over
large literature content. In Proc. of the Workshop on Semantic Web Applications and
Tools for Life Sciences (SWAT4LS), Berlin, Germany, volume 698 of CEUR Workshop
Proceedings. CEUR-WS.org, December 2010. http://ceur-ws.org/Vol-698/paper6.

pdf.

[De Bruijn and Heymans, 2007] Jos De Bruijn and Stijn Heymans. Logical foundations of
(e)RDF(S): complexity and reasoning. In Proc. of 6th Int. Semantic Web Conference
(ISWC’07) and 2nd Asian Semantic Web Conference (ASWC’07), Busan, Korea, pages
86–99, Berlin, Heidelberg, 2007. Springer-Verlag. http://dl.acm.org/citation.cfm?

id=1785162.1785170.

[Eriksson, 2007] Henrik Eriksson. The semantic-document approach to combining docu-
ments and ontologies. Int. J. Hum.-Comput. Stud., 65(7):624–639, July 2007. http:

//dx.doi.org/10.1016/j.ijhcs.2007.03.008.

[Feigenbaum et al., 2013] Lee Feigenbaum, Gregory Todd Williams, Kendall Grant Clark,
and Elias Torres. SPARQL 1.1 protocol. Recommendation, W3C, March 2013. http:

//www.w3.org/TR/2013/REC-sparql11-protocol-20130321/.

[Ferrucci et al., 2010] David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David
Gondek, Aditya A. Kalyanpur, Adam Lally, J. William Murdock, Eric Nyberg, John
Prager, Nico Schlaefer, and Chris Welty. Building Watson: An overview of the DeepQA
Project. AI Magazine, 31(3), 2010. http://www.aaai.org.proxy.lib.sfu.ca/ojs/

index.php/aimagazine/article/view/2303.

[Gantz and Reinsel, 2011] John Gantz and David Reinsel. Extracting value from
chaos. Technical report, IDC Iview, June 2011. http://www.emc.com/collateral/

analyst-reports/idc-extracting-value-from-chaos-ar.pdf.

[Gilbert and Lynch, 2002] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the fea-
sibility of consistent, available, partition-tolerant web services. SIGACT News, 33(2):51–
59, June 2002. http://doi.acm.org/10.1145/564585.564601.

[Glimm and Ogbuji, 2013] Birte Glimm and Chimezie Ogbuji. SPARQL 1.1 entail-
ment regimes. Recommendation, W3C, March 2013. http://www.w3.org/TR/2013/

REC-sparql11-entailment-20130321/.

[Groza et al., 2007] Tudor Groza, Siegfried Handschuh, Knud Moeller, Gunnar Grimnes,
Leo Sauermann, Enrico Minack, Cedric Mesnage, Mehdi Jazayeri, Gerald Reif, and Rosa
Gudjonsdottir. The nepomuk project - on the way to the social semantic desktop. In
Proc. of 3rd Int. Conf. on Semantic Technologies (I-SEMANTICS’07), Graz, Austria,
pages 201–211. JUCS, September 2007. http://www.dfki.uni-kl.de/~sauermann/

papers/groza+2007a.pdf.

NewsReader: ICT-316404 July 16, 2013

http://ceur-ws.org/Vol-698/paper6.pdf
http://ceur-ws.org/Vol-698/paper6.pdf
http://dl.acm.org/citation.cfm?id=1785162.1785170
http://dl.acm.org/citation.cfm?id=1785162.1785170
http://dx.doi.org/10.1016/j.ijhcs.2007.03.008
http://dx.doi.org/10.1016/j.ijhcs.2007.03.008
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
http://www.aaai.org.proxy.lib.sfu.ca/ojs/index.php/aimagazine/article/view/2303
http://www.aaai.org.proxy.lib.sfu.ca/ojs/index.php/aimagazine/article/view/2303
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://doi.acm.org/10.1145/564585.564601
http://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/
http://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/
http://www.dfki.uni-kl.de/~sauermann/papers/groza+2007a.pdf
http://www.dfki.uni-kl.de/~sauermann/papers/groza+2007a.pdf

Knowledge store design 39/61

[Hoffart et al., 2011] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, Edwin
Lewis-Kelham, Gerard de Melo, and Gerhard Weikum. YAGO2: exploring and query-
ing world knowledge in time, space, context, and many languages. In Proc. of 20th Int.
Conf. companion on World Wide Web (WWW’11), Hyderabad, India, pages 229–232,
New York, NY, USA, 2011. ACM. http://doi.acm.org/10.1145/1963192.1963296.

[Hoffart et al., 2013] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Ger-
hard Weikum. YAGO2: A spatially and temporally enhanced knowledge base from
Wikipedia. Artificial Intelligence, 194:28–61, 2013. http://dx.doi.org/10.1016/j.

artint.2012.06.001.

[Khadilkar et al., 2012] Vaibhav Khadilkar, Murat Kantarcioglu, Bhavani M. Thuraising-
ham, and Paolo Castagna. Jena-HBase: A distributed, scalable and efficient RDF triple
store. In Proc. of Int. Semantic Web Conference – Posters & Demonstrations Track
(ISWC’12), Boston, USA, volume 914 of CEUR Workshop Proceedings. CEUR-WS.org,
November 2012. http://ceur-ws.org/Vol-914/paper_14.pdf.

[Motik et al., 2009] Boris Motik, Bijan Parsia, and Peter F. Patel-Schneider. OWL
2 Web Ontology Language structural specification and functional-style syn-
tax. Recommendation, W3C, October 2009. http://www.w3.org/TR/2009/

REC-owl2-syntax-20091027/.

[Patel-Schneider and Franconi, 2012] Peter F. Patel-Schneider and Enrico Franconi. On-
tology constraints in incomplete and complete data. In Proc. of the 11th Int. Semantic
Web Conference (ISWC’12), Boston, MA, pages 444–459, Berlin, Heidelberg, 2012.
Springer-Verlag. http://dx.doi.org/10.1007/978-3-642-35176-1_28.

[Petrov, 2013] Slav Petrov. Large-Scale Language Learning. Technical report, Google,
Slides presented at the “Big data: theoretical and practical challenges” workshop,
May 15, 2013. http://bigdata2013.sciencesconf.org/conference/bigdata2013/

pages/petrov.pdf.

[Rospocher et al., 2013] Marco Rospocher, Francesco Corcoglioniti, Roldano Cattoni,
Bernardo Magnini, and Luciano Serafini. Interlinking unstructured and structured
knowledge in an integrated framework. In Proc. of 7th IEEE International Conference
on Semantic Computing (ICSC), Irvine, CA, USA, 2013. (to appear).

[Seaborne and Harris, 2013] Andy Seaborne and Steve Harris. SPARQL 1.1 query
language. Recommendation, W3C, March 2013. http://www.w3.org/TR/2013/

REC-sparql11-query-20130321/.

[Tao et al., 2010] Jiao Tao, Evren Sirin, Jie Bao, and Deborah L. McGuinness. Integrity
constraints in OWL. In Proc. of 24th Conf. on Artificial Intelligence (AAAI’10), Atlanta,
Georgia, USA. AAAI Press, July 2010. http://www.aaai.org/ocs/index.php/AAAI/

AAAI10/paper/view/1931.

NewsReader: ICT-316404 July 16, 2013

http://doi.acm.org/10.1145/1963192.1963296
http://dx.doi.org/10.1016/j.artint.2012.06.001
http://dx.doi.org/10.1016/j.artint.2012.06.001
http://ceur-ws.org/Vol-914/paper_14.pdf
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/
http://dx.doi.org/10.1007/978-3-642-35176-1_28
http://bigdata2013.sciencesconf.org/conference/bigdata2013/pages/petrov.pdf
http://bigdata2013.sciencesconf.org/conference/bigdata2013/pages/petrov.pdf
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1931
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1931

Knowledge store design 40/61

[ter Horst, 2005] Herman J. ter Horst. Completeness, decidability and complexity of en-
tailment for RDF Schema and a semantic extension involving the OWL vocabulary.
J. Web Sem., 3(2-3):79–115, October 2005. http://dx.doi.org/10.1016/j.websem.

2005.06.001.

[Urbani et al., 2011] Jacopo Urbani, Frank van Harmelen, Stefan Schlobach, and Henri
Bal. QueryPIE: backward reasoning for OWL Horst over very large knowledge bases.
In Proc. of the 10th Int. Semantic Web Conference (ISWC’11), Bonn, Germany, pages
730–745, Berlin, Heidelberg, 2011. Springer-Verlag. http://dl.acm.org/citation.

cfm?id=2063016.2063063.

[Urbani et al., 2012] Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van Harme-
len, and Henri E. Bal. WebPIE: A web-scale parallel inference engine using MapReduce.
J. Web Sem., 10:59–75, 2012. http://dx.doi.org/10.1016/j.websem.2011.05.004.

[van Hage et al., 2011] Willem Robert van Hage, Véronique Malaisé, Roxane Segers, Laura
Hollink, and Guus Schreiber. Design and use of the Simple Event Model (SEM). J. Web
Sem., 9(2):128–136, 2011. http://dx.doi.org/10.1016/j.websem.2011.03.003.

[Xiao and Cruz, 2006] Huiyong Xiao and Isabel F. Cruz. Application design and inter-
operability for managing personal information in the semantic desktop. In Proc. of
the Semantic Desktop and Social Semantic Collaboration Workshop (SemDesk’06) lo-
cated at the 5th Int. Semantic Web Conference (ISWC’06), Athens, GA, USA, vol-
ume 202 of CEUR Workshop Proceedings. CEUR-WS.org, November 2006. http:

//ceur-ws.org/Vol-202/SEMDESK2006_0014.pdf.

NewsReader: ICT-316404 July 16, 2013

http://dx.doi.org/10.1016/j.websem.2005.06.001
http://dx.doi.org/10.1016/j.websem.2005.06.001
http://dl.acm.org/citation.cfm?id=2063016.2063063
http://dl.acm.org/citation.cfm?id=2063016.2063063
http://dx.doi.org/10.1016/j.websem.2011.05.004
http://dx.doi.org/10.1016/j.websem.2011.03.003
http://ceur-ws.org/Vol-202/SEMDESK2006_0014.pdf
http://ceur-ws.org/Vol-202/SEMDESK2006_0014.pdf

Knowledge store design 41/61

A API Specification

This appendix provides a specification of the operations exposed by the KnowledgeStore
API, obtained from the generalization and reorganization of the input collected from
project partners. Following the categorization of Section 3.2, Section A.1 defines intra-
layer operations, while Section A.2 defines inter-layer operations. Note that the specifi-
cation is at a conceptual level, thus abstracting from protocol and format details to be
defined in agreement with WP2 system design. Moreover, common concerns such as client
authentication and error reporting for malformed requests are not covered: they will be
defined as part of the concrete API implementation. Revisions of this specification will be
documented in next WP6 deliverables.

A.1 Intra-layer Operations

Intra-layer operations act on data stored in a single layer of the KnowledgeStore, and can
be further categorized in (i) operations on resources representations, (ii) CRUD operations
and (iii) SPARQL access operations, detailed in the remainder of the section.

A.1.1 Operations on Resources Representations

These operations allow manipulating the representation stored for a resource in the Knowl-
edgeStore. No particular requirement is posed on representations: they are treated as
byte sequences and can be anything (e.g., plain text, PDF or RDF/XML NAF files). At
most a resource representation can be stored for a resource, and it is optional. Operation
storeResourceRepresentation() stores the representation of a resource already defined in
the system, while operation retrieveResourceRepresentation() retrieves it.

HTTP can be used for operations on resource representations. Retrieving a represen-
tation can be implemented with the HTTP GET method; storing a representation with
the HTTP PUT method (as the resource URI is known). HTTP compression, caching
by intermediaries and conditional GET requests (fulfilled only if the requested representa-
tion was changed after a previous GET) can be deployed to make the access to resources
representations more efficient.

name storeResourceRepresentation(resource URI, representation)

description store a resource representation, replacing the currently stored one, if any

input the URI of the resource (must exist in the KnowledgeStore);
the representation of the resource to store

output none on success; an error if the resource URI is unknown

example store the plain text representation of news nwr:r105

notes replacing a resource representation is intended as a maintenance task (e.g., to
support manual intervention to edit and fix stored data); therefore, resource
metadata and depending mentions are not affected by the operation: if they
become invalid, it is a responsibility of the user to update / delete them

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 42/61

name retrieveResourceRepresentation(resource URI) : representation

description retrieve a resource representation, if available

input the URI of the resource (must exist in the KnowledgeStore)

output the representation stored for the resource if any, otherwise an error signaling
either that the URI is unknown or the representation is not available

example retrieve the representation of news nwr:r105

A.1.2 CRUD Operations

CRUD operations allow to manipulate sets of objects in a single layer of the Knowledge-
Store. They are centred around a limited set of manipulation primitives which are imple-
mented (with some exception and minor customizations) for resources, mentions, entities
and statements.57 No CRUD operations are available for contexts, as they are indirectly
specified when manipulating statements and are automatically managed by the system.58

The remainder of this section presents the CRUD primitives in general, then provides their
specifications for the different kinds of manipulable objects.59

CRUD primitives CRUD primitives are the usual create, retrieve, update and delete

primitives, augmented with a merge primitive providing an additional way to update data
and a count primitive for counting matching objects:

create (object descriptions) : assigned URIs and/or creation errors

Stores new objects based on their supplied descriptions. Object URIs are assigned
by the system, with the client specifying temporary URIs just for tracking supplied
objects. Due to possible data validation, creation may succeed only for a subset of
objects, for which URIs are assigned; for the remaining object no data is stored and
the corresponding temporary URIs and creation errors are reported to the client.
As a large number of objects may be created in a single call, input descriptions are
streamed to the server, while output URIs (or errors) are streamed back to the client.

retrieve (condition, output attributes) : object descriptions

Returns all the objects matching a supplied condition. Results are reported in no
particular order and include either all the objects’ attributes or only the specified set
of object attributes (if non-empty). Results are streamed to the client in order to
support bulk retrieval operations.

update (condition, object description, merge criteria) : update errors

Updates all the objects matching a supplied condition, setting one or more of their
attributes (or entity statements) to a particular value; if the attributes were already
set, merge criteria (see below) can be optionally used to combine old values with

57Both an entity-centric and a statement-centric views of the same entity layer data are offered.
58A context is created and its URI assigned when firstly referenced; it is deleted if no more referenced.
59As these operations work similarly for resource, mentions, entities and statements, examples are re-

ported only for the mentions case (where they are most useful).

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 43/61

new ones. This operation mirrors the corresponding SQL update command and
permits to efficiently clear or set one or more attributes on an unbound set of objects,
avoiding the overhead of first retrieving the objects to modify and then updating their
attributes one object at a time. Similarly to create, it is possible that only a subset
of objects is updated (e.g., because of data validation); for the remaining objects,
their URIs and creation errors are reported to the client. It is an error to update
non-modifiable attributes (e.g., a statement subject, predicate, object and context).

delete (condition) : deletion errors

Deletes all the objects matching a supplied condition. Note that objects on which
other objects depend (e.g., a resource referenced by some mention) cannot be deleted.
Therefore, it is possible for the operation to delete only a subset of the objects
matching the condition; for the remaining objects, their URIs and deletion errors are
reported to the client.

merge (object descriptions, merge criteria) : merge errors

Updates a set of objects given their identifiers, setting one or more attributes (or
entity statements) to specific values and possibly applying merge criteria to combine
old and new values. The operation is idempotent and provides an additional way to
update existing data, supporting the common use case where a bunch of objects is
processed (e.g., by an NLP module) resulting in new attributes being computed, and
the resulting local descriptions have to be merged back with the complete descriptions
in the KnowledgeStore. Note that merging may succeed only for a subset of objects
(because of data validation, unknown URIs or change of unmodifiable attributes);
for non-merged objects, their URIs and merge errors are reported to the client.

count (condition) : # matching objects

Returns the number of objects matching a supplied condition. The operation is
redundant as it can be implemented based on retrieve; nevertheless, it is defined in
order to avoid the retrieval of huge quantities of data from the KnowledgeStore when
just a count is needed.

Merge criteria controls the update of existing data with new one, both for update

and merge primitives. They can be specified either for a mention, resource or state-
ment attribute, in which case they control how its previous values are fused with supplied
ones, or for statement predicates, in which case they allow to replace previous statements
with new ones for the same predicate (e.g., to replace a statement saying that an entity
foaf:firstName is ‘John’ with a new one saying it is ’Johnny’). Supported criteria are:

• override, resulting in old data always been replaced by new one (even if the latter
is null, practically resulting in a deletion);
• yield, resulting in new data being set only if no old data exist (i.e., old data takes

precedence);
• union, resulting in new data values (or statements) being unioned with old ones;

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 44/61

• min, resulting in the minimum value among old and new ones being set;60

• max, resulting in the maximum value among old and new ones being set;

Conditions allow selecting the subset of objects to retrieve or update. They are defined
recursively as follows, bu composing basic attribute and statement tests using parenthesis
and the AND and OR operators:61

condition ::= condition OR condition

condition AND condition

(condition)

test on attribute value
test on stmt object { test ... on stmt metadata }

test ::= URI = | < | > | <= | >= | != constant

URI in [constant, constant]

CRUD operations on resources All the six create, retrieve, update, delete, merge
and count primitives are offered for resources. They operate on resource descriptions,
which are sets of key-value pairs where the key is an attribute URI and the value is either
a scalar (e.g., a string) or a compound value itself described by key-value attribute pairs.

name createResources(resources) : assigned URIs / creation errors

description creates one or more resources based on supplied data, generating their URIs

input the resource descriptions for the resources to create, with temporary URIs

output mappings from temporary URIs to assigned URIs, or to errors preventing the
creation of the corresponding resources

name mergeResources(resources, merge criteria) : merge errors

description merges the supplied resource data with data stored in the KnowledgeStore

input resource descriptions to be merged, each one supplying a URI;
merge criteria (optional) for (a subset of) the resource attributes

output for each non-merged resource, its URI and the error preventing the merge

name updateResources(condition, resource, merge crit.) : upd. errors

description updates the resources satisfying a condition, applying optional merge criteria

input condition selecting the resources to update;
resource description with the attributes to set;
merge criteria (optional) for (a subset of) the resource attributes

output for each non-updated resource, its URI and the error preventing the update

60In case of min and max, a complete order must be supported by the values datatype.
61If applied to a multivalued attribute, a test is satisfied if at least one attribute value satisfies the test.

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 45/61

name deleteResources(condition) : delete errors

description deletes all the resources whose attributes satisfy the condition specified

input condition selecting the resources to delete

output for each non-deleted resource, its URI and the error preventing the deletion

name retrieveResources(condition, attribute URIs) : resources

description retrieves selected attributes of resources satisfying the condition specified

input condition selecting the resources to retrieve;
attribute URIs restricting the output; empty list to select all attributes

output resource descriptions with requested attributes

name countResources(condition) : # resources

description returns the number of resources satisfying the condition specified

input condition to be matched by resources

output the number of matching resources

CRUD operations on mentions The six CRUD primitives are offered also for men-
tions, with mention descriptions defined similarly to resource descriptions.

name createMentions(mentions) : assigned URIs / creation errors

description creates one or more mentions based on supplied data, generating their URIs

input mention descriptions for the mentions to create, with temporary URIs

output mappings from temporary URIs to assigned URIs, or to errors preventing the
creation of the corresponding mentions

example create two mentions, one with ks:resource = nwr:r103, rdf:type = PER,
nif:beginIndex = 4, nif:endIndex = 12, and one with ks:resource =

nwr:r103, rdf:type = PER, nif:beginIndex = 131, nif:endIndex = 139;
assigned URI are nwr:m501 and nwr:m502

name mergeMentions(mentions, merge criteria) : merge errors

description merges the supplied mention data with data stored in the KnowledgeStore

input mention descriptions to be merged, each one supplying a URI;
merge criteria (optional) for (a subset of) the attribute URIs

output for each non-merged mention, its URI and the error preventing the merge

example merge local description of mention nwr:m501, having extent = ‘John’, with
its description stored in the KnowledgeStore, having offset = 4; the resulting,
stored description has both extent = ‘John’ and offset = 4

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 46/61

name updateMentions(condition, mention, merge crit.) : update errors

description updates the mentions satisfying a condition, applying optional merge criteria

input condition selecting the mentions to update;
mention description with the attributes to set;
merge criteria (optional) for (a subset of) the attribute URIs

output for each non-updated mention, its URI and the error preventing the update

example clear attribute nwr:polarity of all mentions of type = nwr:EventMention

name deleteMentions(condition) : delete errors

description deletes all the mentions whose attributes satisfy the condition specified

input condition selecting the mentions to delete

output for each non-deleted mention, its URI and the error preventing the deletion

example delete all mentions with resource = nwr:r103

name retrieveMentions(condition, attribute URIs) : mentions

description retrieves selected attributes of mentions satisfying the condition specified

input condition selecting the mentions to retrieve;
attribute URIs restricting the output; empty list to select all attributes

output mention descriptions with requested attributes

example return URI, resource and offset of all the mentions with type = PER

name countMentions(condition) : # mentions

description returns the number of mentions satisfying the condition specified

input condition to be matched by mentions

output the number of matching mentions

CRUD operations on entities Entities are distinguished by the fact that URIs are
assigned externally and their descriptions consist of statements with the entity as subject
or object, rather than attributes (a statements can be seen as an attribute extended with
context and additional metadata). For these reasons, an extended merge operation, able
both to update an entity if the supplied URI is defined in the system, and to create it
otherwise, is more convenient for clients than separate create and merge operations, espe-
cially when integrating descriptions of the same entity coming from different background
knowledge sources. The richer entity description (statements instead of attributes) also
allows merge criteria to operate at two levels:

• at the level of statement predicates, merge criteria allow an update operation to
possibly replace existing statements for the same entity and RDF predicate;
• at the level of statement metadata, merge criteria define how to merge metadata of

old and new statements that happen to have the same subject, predicate, object and
context attributes.

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 47/61

As different URIs are usually employed for statement predicates and metadata attributes,
a single set of merge criteria is supplied to both update and merge operations.

name mergeEntities(entities, merge criteria) : merge errors

description merges the supplied entity data with data stored in the KnowledgeStore, pos-
sibly resulting in the creation of new entities if the supplied URIs are not
defined in the system

input entity descriptions to be merged/created, with externally assigned URIs;
merge criteria (optional) for statement predicates or metadata attributes

output for each non-merged/non-created entity, its URI and the causing error

name updateEntities(condition, entity, merge crit.) : update errors

description updates the statements of entities satisfying a given condition, applying op-
tional merge criteria

input condition selecting the entities to update;
entity description with the statements to set / modify;
merge criteria (optional) for statement predicates or metadata attributes

output for each non-updated entity, its URI and the error preventing the update

name deleteEntities(condition) : delete errors

description deletes all the entities whose statements satisfy the condition specified

input condition selecting the entities to delete

output for each non-deleted entity, its URI and the error preventing the deletion

name retrieveEntities(condition, predicate URIs) : entities

description retrieves selected statements of entities satisfying the condition specified

input condition selecting the entities to retrieve;
predicate URIs restricting the output; empty list selects all statements

output entity descriptions with requested statements

name countEntities(condition) : # entities

description returns the number of entities satisfying the condition specified

input condition to be matched by entities

output the number of matching entities

CRUD operations on statements Statements are fine-grained objects that are man-
aged, accordingly to mainstream RDF APIs (e.g., Sesame), using a merge semantics only
and without an explicit create operation. This permits a client to load a bunch of state-
ments with just a merge call, which will create the statements if they do not exist or
update them (merging their metadata) if they are already defined in the KnowledgeStore.

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 48/61

Apart the different merge semantics and the missing create, the remaining update, delete,
retrieve and count primitives are defined for statements too, and operate on a statement
description which is a set of key-value attribute pairs similarly to resource and mention
descriptions.

name mergeStatements(statements, merge criteria) : merge errors

description merges the supplied statement data with data stored in the KnowledgeStore,
possibly resulting in the creation of new statements

input statement descriptions to be merged or created;
merge criteria (optional) for (a subset of) statement attributes

output for each non-merged/non-created statement, its components and the causing
error

notes merge occurs if old and new statements have the same subject, predicate,
object and context (which form a statement identity)

name updateStatements(condition, statement, merge criteria) : update

errors

description updates the statements satisfying a condition, applying optional merge criteria

input condition selecting the statements to update;
statement description with the attributes to set;
merge criteria (optional) for (a subset of) statement attributes

output for each non-updated statement, its components and the causing error

name deleteStatements(condition) : delete errors

description deletes all the statements whose attributes satisfy the condition specified

input condition selecting the statements to delete

output for each non-deleted statement, its components and the causing error

name retrieveStatements(condition, attribute URIs) : statements

description retrieves selected attributes of statements satisfying the condition specified

input condition selecting the statements to retrieve;
attribute URIs restricting the output; empty list selects all attributes

output statement descriptions with requested attributes

name countStatements(condition) : # statements

description returns the number of statements satisfying the condition specified

input condition to be matched by statements

output the number of matching statements

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 49/61

A.1.3 SPARQL Access to Statements

SPARQL query access complying with the SPARQL Protocol W3C standard [Feigenbaum
et al., 2013] is offered for indexed statements (i.e., the ones in the triple store, see Sec-
tion 4.2.2), and consists in the possibility of evaluating SPARQL SELECT, ASK, CON-
STRUCT and DESCRIBE queries over all or a subset of indexed statements as identified
by a SPARQL dataset [Seaborne and Harris, 2013]. A dataset consists of two sets of graph
URIs: graphs in the first sets are merged together forming the default graph for the query;
graphs in the second set become the named graphs for the query. The dataset is optionally
supplied by the client, either as an operation parameter or embedded in the query string
(FROM and FROM NAMED clauses). If not specified, a default dataset is used, having all the
stored graphs as named graphs and their RDF merge as the default graph.

SPARQL query results will be computed considering all the statements that can be
inferred according to the logical inference solution to be defined in T6.3. From a conceptual
point of view (the implementation may be different), the approach can be assimilated to a
two-steps procedure: (i) all the inferences are materialized; and (ii) the SPARQL operation
is evaluated over all the resulting statements, being them explicitly stated or inferred. It is
worth clarifying that this does not correspond to the adoption of a (non-simple) SPARQL
entailment regime [Glimm and Ogbuji, 2013], as it would allow deriving different sets of
inferences according to the dataset of the client query [Glimm and Ogbuji, 2013, Section 9],
thus preventing techniques such as (partial) closure materialization and hence scalability.

name sparqlQuery(query, dataset) : query solutions or triples

description evaluates the supplied SPARQL query on indexed statements or a subset of
them identified by the dataset parameter

input the query string, in the SELECT, ASK, CONSTRUCT or DESCRIBE forms;
an optional dataset specification

output on success, either a list of query solution (tuples of variable bindings) for
SELECT and ASK queries, or a set of RDF triples for CONSTRUCT or
DESCRIBE queries

example evaluate the following query:
SELECT ?p ?e FROM nwr:ctx106 WHERE {

?p a foaf:Person .

?e a nwr:SellEvent ; sem:hasActor ?p }
notes results are streamed to the client

A.2 Inter-layer Operations

Inter-layer operations comprise the general-purpose match() operation as well as a number
of NewsReader-specific operations collected from project partners.

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 50/61

name match(condition and output attribute URIs at resource, mention

and entity level) : matching <resource, mention, entity> tuples

description returns a set of 〈resource, mention, entity〉 tuples whose mention occurs in the
resource and refers to the entity, and such that their attributes and statements
satisfy a certain condition; for each tuple, a specified set of output attributes
for each resource, mention and entity element is returned

input a condition over the attributes of matched resources and mentions and over
the statements of matched entities; a list of predicate URIs identifying output
attributes for resources and mentions, and output statements for entities

output an unordered list of matching 〈resource, mention, entity〉 tuples with the out-
put attributes specified

example retrieve uri and dc:title of all the resources of type nwr:News in which
entity dbpedia:Berlin is mentioned

notes results are streamed to the client

name getLocationsByInstance(entity URI, time period)

description gives a list of LOC entities where an instance of an entity is mentioned

input the ID for the instance (either event or entity)

output list with the instance ID

example give a list of location instances in which Merkel was located in the period 2011
till 2012

notes possibly restricted by periods

name getEventMentionsByRoleByEntityType(role, entity type)

description lists all the mentions of events for an entity type with the specified role and
the attributes of the events to return (e.g. type)

input the type of Role and the type of entity

output a list with the mention ID of the events and the selected attributes for each
matching event mention

example provide a list of event mentions in which PER+CEO has the A2 (Propbank)
role in the period 2005 till 2012, attributes are event type, date of publication

name getParticipantMentionsByRoleByEventType(role, entity type)

description lists all the mentions of entities participating with the specified role for an
event type and the attributes of the events to return (e.g. type)

input the type of Role and the type of event

output a list with the mention ID of the participants and the selected attributes for
each matching participant mention

example list all mentions of entities that have the A2 role in events of the type
EVENT+Fired, attributes: name, type, date, location

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 51/61

B Core Data Model Ontology

This appendix specifies the KnowledgeStore Core Data Model Ontology, an OWL 2 ontology
that formalizes the core concepts of the KnowledgeStore data model. In addition, it declares
a number of annotation properties for specifying how instance data has to be stored in a
KnowledgeStore instance. These properties currently contain only the ks:storedAttribute
annotation property, which specifies which attributes are stored in the KnowledgeStore
for the instances of a certain class; additional properties will be defined as part of the
implementation in order to control the generation of keys, replication and the deployment
of additional indexes. The ontology is reported in the following listing using the the
Manchester Syntax, with rdfs:comments documenting its main concepts. Following best
practices for ontology publishing, it is also available (also in additional syntaxes, accessible
via content negotiation) at the URL http://dkm.fbk.eu/ontologies/knowledgestore.

1 Prefix: dc: <http://purl. org/dc/terms/>
2 Prefix: nie: <http://www.semanticdesktop.org/ontologies/2007/01/19/nie#>
3 Prefix: nfo: <http://www.semanticdesktop.org/ontologies/2007/03/22/nfo#>
4 Prefix: ks: <http://dkm.fbk.eu/ontologies/knowledgestore#>
5

6 # ONTOLOGY DECLARATION
7

8 Ontology: <http://dkm.fbk.eu/ontologies/knowledgestore>
9 Import: <http://purl. org/dc/terms/>

10 Import: <http://www.semanticdesktop.org/ontologies/2007/01/19/nie>
11 Import: <http://www.semanticdesktop.org/ontologies/2007/03/22/nfo>
12 Annotations: rdfs:label ”KnowledgeStore Core Data Model ontology”@en,
13 rdfs:comment ”This ontology formalizes the core concepts of the KnowledgeStore data model, i. e.,
14 the classes , attributes and relations of the fixed part of the model (i . e., the TBox); these
15 concepts can be extended by derived ontologies in order to configure specific KnowledgeStore
16 instances . This ontology provides also a number of annotation properties for specifying how
17 instance data (i . e., the ABox) has to be stored by the KnowledgeStore.”@en
18

19 # IMPORTED TERMS (REQUIRED BY PROTEGE)
20

21 Class: rdf:Property Class: rdfs:Class Datatype: rdfs:Literal
22 DataProperty: nfo:fileName DataProperty: nfo:fileSize DataProperty: nfo:fileCreated
23 DataProperty: nfo:fileLastModified ObjectProperty: dc:format ObjectProperty: nie:isStoredAs
24

25 # ANNOTATION PROPERTIES
26

27 AnnotationProperty: ks:storedAttribute
28 Domain: <http://www.w3.org/2002/07/owl#Class> Range: <http://www.w3.org/1999/02/22−rdf−syntax−ns#

Property>
29 Annotations: rdfs:label ”stored attribute ”@en,
30 rdfs:comment ”Specifies which attributes are stored in the KnowledgeStore for instances of a certain
31 class ; note that attributes stored for a super−class are inherited by its sub−classes. ”@en
32

33 # RESOURCES
34

35 Class: ks:Resource
36 Annotations: ks:storedAttribute nie:isStoredAs , ks:storedAttribute ks:contains ,
37 rdfs:label ”resource ”@en,
38 rdfs:comment ”A self−contained and identifiable information object with a digital representation ,
39 such as a news article , a photo or a video. ”@en
40

41 Class: nfo:FileDataObject
42 Annotations: ks:storedAttribute dc:format, ks:storedAttribute nfo:fileName ,
43 ks:storedAttribute nfo:fileSize , ks:storedAttribute nfo:fileCreated ,

NewsReader: ICT-316404 July 16, 2013

http://dkm.fbk.eu/ontologies/knowledgestore

Knowledge store design 52/61

44 ks:storedAttribute nfo:fileLastModified ,
45 rdfs:label ”file ”@en,
46 rdfs:comment ”A digital file holding the representaiton of a resource . Instances of this class are
47 automatically managed by the KnowledgeStore based on uploaded resource representations ”@en
48

49 ObjectProperty: ks:contains
50 Domain: ks:Resource Range: ks:Mention
51 Annotations: rdfs:label ”contains”@en,
52 rdfs:comment ”Denotes the mentions contained in a resource . ”@en
53

54 # MENTIONS
55

56 Class: ks:Mention
57 SubClassOf: ks:containedIn exactly 1 ks:Resource
58 Annotations: ks:storedAttribute ks:containedIn , ks:storedAttribute ks:refersTo ,
59 rdfs:label ”mention”@en,
60 rdfs:comment ”A fragment of resource (e. g., a piece of text or a bunch of pixels) that denotes
61 something of interest , such as an entity or a relation among entity, a concept.”@en
62

63 ObjectProperty: ks:containedIn
64 Characteristics: Functional InverseOf: ks:contains
65

66 ObjectProperty: ks:refersTo
67 Domain: ks:Mention Range: ks:Entity Characteristics: Functional
68 Annotations: rdfs:label ”refers to”@en,
69 rdfs:comment ”Denotes the entity a given mention refers to. ”@en
70

71 # ENTITIES
72

73 Class: ks:Entity
74 Annotations: ks:storedAttribute ks:referredBy , # denotes the entity mentions
75 rdfs:label ”entity ”@en,
76 rdfs:comment ”Any identifiable entity in the domain of discourse , extracted from text and/or
77 imported from some source of background knowledge.”@en
78

79 ObjectProperty: ks:referredBy
80 InverseOf: ks:refersTo
81

82 # STATEMENTS
83

84 Class: ks:Statement # not closed to type, attribute and relation cases to allow for more complex statements
85 SubClassOf: ks:predicate some rdf:Property, ks:context some ks:Context
86 Annotations: ks:storedAttribute ks:subject , ks:storedAttribute ks:predicate ,
87 ks:storedAttribute ks:context , ks:storedAttribute ks:extractedFrom,
88 rdfs:label ”statement”@en,
89 rdfs:comment ”A <subject, predicate , object> triple possibly extracted from some mentions and
90 holding in a specific context, that describes some feature of a subject entity . ”@en
91

92 ObjectProperty: ks:subject
93 Domain: ks:Statement Range: ks:Entity Characteristics: Functional
94 Annotations: rdfs:label ”subject ”@en,
95 rdfs:comment ”Denotes the subject of a Statement.”@en
96

97 ObjectProperty: ks:predicate
98 Domain: ks:Statement Range: rdf:Property Characteristics: Functional
99 Annotations: rdfs:label ”predicate ”@en,

100 rdfs:comment ”Denotes the predicate of a Statement.”@en
101

102 ObjectProperty: ks:context
103 Domain: ks:Statement Range: ks:Context Characteristics: Functional
104 Annotations: rdfs:label ”context”@en,
105 rdfs:comment ”Denotes the context a statement holds in ”@en
106

107 ObjectProperty: ks:extractedFrom
108 Domain: ks:Statement Range: ks:Mention

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 53/61

109 Annotations: rdfs:label ”extracted from”@en,
110 rdfs:comment ”Denotes the mention a statement has been extracted from.”@en
111

112 # KINDS OF STATEMENTS
113

114 Class: ks:TypeStatement
115 EquivalentTo: ks:Statement and ks:type some owl:Thing
116 Annotations: ks:storedAttribute ks:type ,
117 rdfs:label ”type statement”@en,
118 rdfs:comment ”A statement expressing the type of an entity . ”@en
119

120 ObjectProperty: ks:type
121 Domain: ks:TypeStatement Range: rdfs:Class Characteristics: Functional
122 Annotations: rdfs:label ”type”@en,
123 rdfs:comment ”Denotes the type of a TypeStament.”@en
124

125 Class: ks:AttributeStatement
126 EquivalentTo: ks:Statement and ks:value exactly 1 rdfs:Literal
127 Annotations: ks:storedAttribute ks:value ,
128 rdfs:label ”attribute statement”@en,
129 rdfs:comment ”A statement expressing an attribute of an entity . ”@en
130

131 DataProperty: ks:value
132 Domain: ks:AttributeStatement Range: rdfs:Literal Characteristics: Functional
133 Annotations: rdfs:label ”value”@en,
134 rdfs:comment ”Denotes the value of an AttributeStatement. ”@en
135

136 Class: ks:RelationStatement
137 EquivalentTo: ks:Statement and ks:object some ks:Entity
138 Annotations: ks:storedAttribute ks:object ,
139 rdfs:label ”relation statement”@en,
140 rdfs:comment ”A statement expressing a relation among two entities . The first entity is denoted by
141 the subject , the second one by mandatory attribute hasObject.”@en
142

143 ObjectProperty: ks:object
144 Domain: ks:RelationStatement Range: ks:Entity Characteristics: Functional
145 Annotations: rdfs:label ”object”@en,
146 rdfs:comment ”Denotes the object of a RelationStatement.”@en
147

148 # CONTEXTS
149

150 Class: ks:Context
151 Annotations: rdfs:label ”context”@en,
152 rdfs:comment ”A region in a space of contextual dimensions (e. g., time, point of view) where
153 certain statements hold, identified by a URI.”@en
154

155 # DISJOINTNESS CONSTRAINTS
156

157 DisjointClasses: ks:Resource, ks:Mention, ks:Entity , ks:Statement, ks:Context, nfo:FileDataObject
158 DisjointClasses: ks:TypeStatement, ks:AttributeStatement , ks:RelationStatement

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 54/61

C NewsReader Data Model Ontology

This appendix specifies the NewsReader Data Model Ontology, an OWL 2 ontology that
formalizes the data model of the KnowledgeStore instance for NewsReader through the
specialization of the Core Data Model Ontology. The ontology is reported in the follow-
ing listing using the the Manchester Syntax, with rdfs:comments documenting its main
concepts. Following best practices for ontology publishing, it is also available (also in
additional syntaxes, accessible via content negotiation) at the URL http://dkm.fbk.eu/

ontologies/newsreader.

1 Prefix: dc: <http://purl. org/dc/terms/>
2 Prefix: nif: <http://nlp2rdf. lod2. eu/schema/string/>
3 Prefix: sem: <http://semanticweb.cs.vu.nl/2009/11/sem/>
4 Prefix: nie: <http://www.semanticdesktop.org/ontologies/2007/01/19/nie#>
5 Prefix: nfo: <http://www.semanticdesktop.org/ontologies/2007/03/22/nfo#>
6 Prefix: ks: <http://dkm.fbk.eu/ontologies/knowledgestore#>
7 Prefix: nwr: <http://dkm.fbk.eu/ontologies/newsreader#>
8

9 # ONTOLOGY DECLARATION
10

11 Ontology: <http://dkm.fbk.eu/ontologies/newsreader>
12 Import: <http://dkm.fbk.eu/ontologies/knowledgestore>
13 Import: <http://semanticweb.cs.vu.nl/2009/11/sem/>
14 Import: <http://nlp2rdf. lod2. eu/schema/string/>
15 Import: <http://www.semanticdesktop.org/ontologies/2007/03/22/nfo>
16 Annotations: rdfs:label ”NewsReader Data Model ontology”@en,
17 rdfs:comment ”This ontology defines the data model of the NewsReader KnowledgeStore instance.”@en
18

19 # IMPORTED TERMS (REQUIRED BY PROTEGE)
20

21 Class: ks:Entity Class: nfo:FileDataObject Class: nfo:TextDocument
22 Class: dc:PeriodOfTime DataProperty: nie:keyword DataProperty: nif:beginIndex
23 DataProperty: nif:endIndex DataProperty: nif:anchorOf DataProperty: sem:hasEndTimeStamp
24 DataProperty: dc:title DataProperty: dc:issued DataProperty: sem:hasBeginTimeStamp
25 DataProperty: nfo:characterCount DataProperty: nfo:wordCount AnnotationProperty: rdfs:comment
26 AnnotationProperty: dc:source AnnotationProperty: dc:subject AnnotationProperty: ks:storedAttribute
27 ObjectProperty: dc:publisher ObjectProperty: dc:contributor ObjectProperty: dc:creator
28 ObjectProperty: dc:spatial ObjectProperty: dc:temporal ObjectProperty: dc:rights
29 ObjectProperty: dc:rightsHolder ObjectProperty: dc:language ObjectProperty: nfo:fileUrl
30 ObjectProperty: ks:refersTo ObjectProperty: sem:accordingTo
31

32 # RESOURCES
33

34 Class: ks:Resource
35 Annotations: ks:storedAttribute <http://www.w3.org/2000/01/rdf−schema#comment>
36

37 Class: nwr:NAFAnnotation
38 SubClassOf: ks:Resource, nwr:annotationOf some nwr:News, nfo:TextDocument
39 Annotations: ks:storedAttribute nwr:layer ,
40 ks:storedAttribute nwr:annotationOf,
41 rdfs:label ”NAF annotation”@en,
42 rdfs:comment ”The annotation of a news according to the NAF format, consisting in one or more layers
43 of NLP annotations encoded in a standoff , XML−based format.”@en
44

45 Class: nwr:News
46 SubClassOf: ks:Resource, nfo:TextDocument
47 Annotations: ks:storedAttribute dc:title , ks:storedAttribute dc:publisher ,
48 ks:storedAttribute dc:creator , ks:storedAttribute dc:issued ,
49 ks:storedAttribute dc:spatial , ks:storedAttribute dc:temporal,
50 ks:storedAttribute dc:rights , ks:storedAttribute dc:rightsHolder ,

NewsReader: ICT-316404 July 16, 2013

http://dkm.fbk.eu/ontologies/newsreader
http://dkm.fbk.eu/ontologies/newsreader

Knowledge store design 55/61

51 ks:storedAttribute dc:language, ks:storedAttribute nie:keyword ,
52 ks:storedAttribute nfo:fileUrl , ks:storedAttribute nfo:characterCount ,
53 ks:storedAttribute nfo:wordCount, ks:storedAttribute nwr:annotatedWith,
54 ks:storedAttribute <http://purl. org/dc/terms/subject>,
55 rdfs:label ”news”@en,
56 rdfs:comment ”A news article , consisting in the news plain text and associated metadata.”@en
57

58 ObjectProperty: nwr:layer
59 Domain: nwr:NAFAnnotation Range: nwr:NAFLayer
60 Annotations: rdfs:label ”available layer ”@en,
61 rdfs:comment ”Specifies the NAF layers available in a NAF annotation resource”@en
62

63 Class: nwr:NAFLayer
64 EquivalentTo: { nwr:naf text , nwr:naf terms, nwr:naf deps, nwr:naf chunks, nwr:naf entities ,
65 nwr:naf coreferences , nwr:naf opinions , nwr:naf events , nwr:naf timex3 }
66 Annotations: rdfs:label ”NAF layer”@en,
67 rdfs:comment ”A NAF layers. Currently defined layers include text , terms, dependencies (deps), chunks,
68 entities , coreferences , opinions , events and timex3 expressions . ”@en
69

70 Individual: nwr:naf text Individual: nwr:naf terms Individual: nwr:naf deps
71 Individual: nwr:naf chunks Individual: nwr:naf entities Individual: nwr:naf coreferences
72 Individual: nwr:naf opinions Individual: nwr:naf events Individual: nwr:naf timex3
73

74 ObjectProperty: nwr:annotationOf
75 Domain: nwr:NAFAnnotation Range: nwr:News Characteristics: Functional
76 Annotations: rdfs:label ”annotation of”@en,
77 rdfs:comment ”Specifies the news resource a NAF annotation resource is associated to. ”@en
78

79 ObjectProperty: nwr:annotatedWith
80 InverseOf: nwr:annotationOf
81 Annotations: rdfs:label ”annotated with”@en,
82 rdfs:comment ”Specifies the NAF annotation(s) associated to a news resource. ”@en
83

84 DataProperty: nwr:beginTime
85 Domain: dc:PeriodOfTime Range: xsd:date
86 Annotations: rdfs:label ”begin time”@en,
87 rdfs:comment ”The begin time of a period of time (may be missing, denoting an open ended period). ”@en
88

89 DataProperty: nwr:endTime
90 Domain: dc:PeriodOfTime Range: xsd:date
91 Annotations: rdfs:label ”end time”@en,
92 rdfs:comment ”The end time of a period of time (may be missing, denoting an open ended period). ”@en
93

94 # MENTIONS CLASS HIERARCHY
95

96 Class: ks:Mention # nif:beginIndex , nif:endIndex , nif:anchorOf mandatory for all mentions
97 SubClassOf: nif:beginIndex some xsd:integer , nif:endIndex some xsd:integer , nif:anchorOf some xsd:string
98 Annotations: ks:storedAttribute nif:beginIndex ,
99 ks:storedAttribute nif:endIndex ,

100 ks:storedAttribute nif:anchorOf ,
101 ks:storedAttribute nwr:confidence ,
102 ks:storedAttribute <http://www.w3.org/2000/01/rdf−schema#comment>
103

104 Class: nwr:SignalMention
105 SubClassOf: ks:Mention, ks:refersTo max 0 owl:Thing
106 Annotations: rdfs:label ”signal mention”@en,
107 rdfs:comment ”A piece of text supporting the existence of a causal (CLink) or temporal (TLink)
108 relation among events and/or time expressions . ”@en
109

110 Class: nwr:ValueMention
111 SubClassOf: ks:Mention, ks:refersTo max 0 owl:Thing
112 Annotations: ks:storedAttribute nwr:valueType,
113 rdfs:label ”value mention”@en,
114 rdfs:comment ”A numerical expression denoting either a quantity (cardinal numbers in general), a
115 percentage or a monetary value. ”@en

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 56/61

116

117 Class: nwr:EntityMention
118 SubClassOf: ks:Mention
119 Annotations: rdfs:label ”entity mention”@en,
120 rdfs:comment ”A piece of text denoting an entity in the domain of discourse (identified by relation
121 nwr:refersTo), such as a person, organization or location . ”@en
122

123 Class: nwr:RelationMention
124 SubClassOf: ks:Mention, ks:refersTo max 0 owl:Thing
125 Annotations: rdfs:label ”relation mention”@en,
126 rdfs:comment ”A piece of text expressign a relation between two entities , whose mentions are
127 identified by nwr:arg1 and nwr:arg2 links). ”@en
128

129 Class: nwr:ObjectMention
130 SubClassOf: nwr:EntityMention
131 Annotations: ks:storedAttribute nwr:head, ks:storedAttribute nwr:syntacticType,
132 ks:storedAttribute nwr:referenceType, ks:storedAttribute nwr:entityType,
133 rdfs:label ”object mention”@en,
134 rdfs:comment ”A mention of an endurant object (in KR literature), such as a person, organization or
135 location (known as ’entities ’ in the NLP literature). ”@en
136

137 Class: nwr:TimeOrEventMention
138 SubClassOf: nwr:EntityMention
139 EquivalentTo: nwr:EventMention or nwr:TimeMention
140 Annotations: rdfs:label ”time or event mention”@en,
141 rdfs:comment ”Utility concept aggregating mentions of events and mentions of time expressions . ”@en
142

143 Class: nwr:EventMention
144 SubClassOf: nwr:TimeOrEventMention
145 Annotations: ks:storedAttribute nwr:pred, ks:storedAttribute nwr:pos,
146 ks:storedAttribute nwr:factual , ks:storedAttribute nwr:tense,
147 ks:storedAttribute nwr:aspect, ks:storedAttribute nwr:vform,
148 ks:storedAttribute nwr:polarity , ks:storedAttribute nwr:mood,
149 ks:storedAttribute nwr:modality,
150 rdfs:label ”event mention”@en,
151 rdfs:comment ”A mention of an event.”@en
152

153 Class: nwr:TimeMention
154 SubClassOf: nwr:TimeOrEventMention
155 Annotations: ks:storedAttribute nwr:value,
156 ks:storedAttribute nwr:timeType,
157 rdfs:label ”time mention”@en,
158 rdfs:comment ”A mention of a time expression . ”@en
159

160 Class: nwr:TLink
161 SubClassOf: nwr:RelationMention, nwr:arg1 some nwr:TimeOrEventMention, nwr:arg2 some nwr:TimeOrEventMention
162 Annotations: ks:storedAttribute nwr:relType,
163 ks:storedAttribute nwr:signal ,
164 rdfs:label ”TLink”@en,
165 rdfs:comment ”A temporal link, i . e., a mention denoting a temporal relation among two events and/or
166 time expressions . ”@en
167

168 Class: nwr:CLink
169 SubClassOf: nwr:RelationMention, nwr:arg1 some nwr:EventMention, nwr:arg2 some nwr:EventMention
170 Annotations: ks:storedAttribute nwr:signal ,
171 rdfs:label ”CLink”@en,
172 rdfs:comment ”A causal link , i . e., a mention denoting a causal relation among two events.”@en
173

174 Class: nwr:SLink
175 SubClassOf: nwr:RelationMention, nwr:arg1 some nwr:EventMention, nwr:arg2 some nwr:EventMention
176 Annotations: rdfs:label ”SLink”@en,
177 rdfs:comment ”A structural link , i . e., a mention denoting a structural relation among two events.”@en
178

179 Class: nwr:Participation
180 SubClassOf: nwr:RelationMention, nwr:arg1 some nwr:EventMention, nwr:arg2 some nwr:ObjectMention

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 57/61

181 Annotations: ks:storedAttribute nwr:semRole,
182 ks:storedAttribute nwr:dep,
183 rdfs:label ”participation ”@en,
184 rdfs:comment ”A mention denoting the participation of an object (e. g., a person) to a certain event,
185 further characterized by the role played by that object and a syntactic dependency among the

object
186 and the event. ”@en
187

188 # ATTRIBUTES OF VALUE MENTIONS
189

190 ObjectProperty: nwr:valueType
191 Domain: nwr:ValueMention Range: nwr:ValueType Characteristics: Functional
192 Annotations: rdfs:label ”value type”@en,
193 rdfs:comment ”Specifies the type of value expressed by a value mention.”@en
194

195 Class: nwr:ValueType
196 EquivalentTo: { nwr:value percent , nwr:value money, nwr:value quantity }
197 Annotations: rdfs:label ”value type”@en,
198 rdfs:comment ”Enumeration of value types: either a percentage (nwr:value percent), a monetary value
199 (nwr:value money) or a generic quantity (nwr:value quantity). ”@en
200

201 Individual: nwr:value percent Individual: nwr:value money Individual: nwr:value quantity
202

203 # ATTRIBUTES OF OBJECT MENTIONS
204

205 DataProperty: nwr:head
206 Domain: nwr:ObjectMention Range: xsd:string Characteristics: Functional
207 Annotations: rdfs:label ”head”@en,
208 rdfs:comment ”Specifies the head of a mention, which is a string contained in the mention extent. ”@en
209

210 ObjectProperty: nwr:syntacticType
211 Domain: nwr:ObjectMention Range: nwr:SyntacticType Characteristics: Functional
212 Annotations: rdfs:label ”syntactic type”@en,
213 rdfs:comment ”Specifies the syntactic category of the mention.”@en
214

215 Class: nwr:SyntacticType
216 EquivalentTo: { nwr:syn nam, nwr:syn nom, nwr:syn pro, nwr:syn whq, nwr:syn ptv,
217 nwr:syn app, nwr:syn conj , nwr:syn pre , nwr:syn other }
218 Annotations: rdfs:label ”syntactic type”@en,
219 rdfs:comment ”Enumeration of syntactic types, such as proper name (nwr:syn nam), pronoun
220 (nwr:syn pro), ... ”@en
221

222 Individual: nwr:syn nam Individual: nwr:syn nom Individual: nwr:syn pro
223 Individual: nwr:syn whq Individual: nwr:syn ptv Individual: nwr:syn app
224 Individual: nwr:syn conj Individual: nwr:syn pre Individual: nwr:syn other
225

226 ObjectProperty: nwr:referenceType
227 Domain: nwr:ObjectMention Range: nwr:ReferenceType Characteristics: Functional
228 Annotations: rdfs:label ”reference type”@en,
229 rdfs:comment ”Specifies the kind of reference a mention makes to the entity . ”@en
230

231 Class: nwr:ReferenceType
232 EquivalentTo: { nwr:ref spc , nwr:ref gen , nwr:ref usp , nwr:ref neg }
233 Annotations: rdfs:label ”reference type”@en,
234 rdfs:comment ”Enumeration of reference types. Possible values are: nwr:ref spc (specific referential),
235 nwr:ref gen (generic referential), nwr:ref usp (under−specified referential), nwr:ref neg
236 (negatively quantified). ”@en
237

238 Individual: nwr:ref spc Individual: nwr:ref gen
239 Individual: nwr:ref usp Individual: nwr:ref neg
240

241 ObjectProperty: nwr:entityType
242 Domain: nwr:ObjectMention Range: nwr:EntityType Characteristics: Functional
243 Annotations: rdfs:label ”entity type”@en,
244 rdfs:comment ”Specifies the semantic type of the mentioned entity . ”@en

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 58/61

245

246 Class: nwr:EntityType
247 EquivalentTo: { nwr:ent person, nwr:ent location , nwr:ent organization , nwr:ent artifact , nwr:ent financial }
248 Annotations: rdfs:label ”entity type”@en,
249 rdfs:comment ”Enumeration of entity types. ”@en
250

251 Individual: nwr:ent person Individual: nwr:ent location Individual: nwr:ent organization
252 Individual: nwr:ent artifact Individual: nwr:ent financial
253

254 # ATTRIBUTES OF EVENT MENTIONS
255

256 ObjectProperty: nwr:eventType
257 Domain: nwr:EventMention Range: nwr:EventType Characteristics: Functional
258 Annotations: rdfs:label ”event type”@en,
259 rdfs:comment ”Specifies the semantic type of the mentioned event.”@en
260

261 Class: nwr:EventType
262 EquivalentTo: { nwr:ev speech cognitive , nwr:ev contextual , nwr:ev grammatical }
263 Annotations: rdfs:label ”event type”@en,
264 rdfs:comment ”Enumeration of event types. ”@en
265

266 Individual: nwr:ev speech cognitive Individual: nwr:ev contextual Individual: nwr:ev grammatical
267

268 DataProperty: nwr:pred
269 Domain: nwr:EventMention Range: xsd:string Characteristics: Functional
270 Annotations: rdfs:label ”pred”@en,
271 rdfs:comment ”Specifies the lemma of the token describing the event. ”@en
272

273 ObjectProperty: nwr:pos
274 Domain: nwr:EventMention Range: nwr:PartOfSpeech Characteristics: Functional
275 Annotations: rdfs:label ”pos”@en,
276 rdfs:comment ”Specifies the part−of−speech for the event mention.”@en
277

278 Class: nwr:PartOfSpeech
279 EquivalentTo: { nwr:pos adjective , nwr:pos noun, nwr:pos verb, nwr:pos preposition , nwr:pos other }
280 Annotations: rdfs:label ”part−of−speech”@en,
281 rdfs:comment ”Enumeration of possible part−of−speech.”@en
282

283 Individual: nwr:pos adjective Individual: nwr:pos noun Individual: nwr:pos verb
284 Individual: nwr:pos preposition Individual: nwr:pos other
285

286 DataProperty: nwr:factual
287 Domain: nwr:EventMention Range: xsd:boolean Characteristics: Functional
288 Annotations: rdfs:label ”factual ”@en,
289 rdfs:comment ”Specifies whether the mentioned event is factual . ”@en
290

291 ObjectProperty: nwr:tense
292 Domain: nwr:EventMention Range: nwr:Tense Characteristics: Functional
293 Annotations: rdfs:label ”tense”@en,
294 rdfs:comment ”Specifies the tense of the verb conveying the mentioned event.”@en
295

296 Class: nwr:Tense
297 EquivalentTo: { nwr:tense future , nwr:tense past , nwr:tense present , nwr:tense infinitive ,
298 nwr:tense prespart , nwr:tense pastpart , nwr:tense none }
299 Annotations: rdfs:label ”tense”@en,
300 rdfs:comment ”Enumeration of verb tenses. ”@en
301

302 Individual: nwr:tense future Individual: nwr:tense past Individual: nwr:tense present
303 Individual: nwr:tense infinitive Individual: nwr:tense prespart Individual: nwr:tense pastpart
304 Individual: nwr:tense none
305

306 ObjectProperty: nwr:aspect
307 Domain: nwr:EventMention Range: nwr:Aspect Characteristics: Functional
308 Annotations: rdfs:label ”aspect”@en,
309 rdfs:comment ”Specifies the aspect of the verb conveying the mentioned event.”@en

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 59/61

310

311 Class: nwr:Aspect
312 EquivalentTo: { nwr:aspect progressive , nwr:aspect perfective , nwr:aspect imperfective ,
313 nwr:aspect perfective progressive , nwr:aspect imperfective progressive , nwr:aspect none }
314 Annotations: rdfs:label ”aspect”@en,
315 rdfs:comment ”Enumeration of verb aspects. ”@en
316

317 Individual: nwr:aspect progressive Individual: nwr:aspect perfective
318 Individual: nwr:aspect imperfective Individual: nwr:aspect perfective progressive
319 Individual: nwr:aspect imperfective progressive Individual: nwr:aspect none
320

321 ObjectProperty: nwr:vform
322 Domain: nwr:EventMention Range: nwr:VerbForm Characteristics: Functional
323 Annotations: rdfs:label ”vform”@en,
324 rdfs:comment ”Specifies the form of the verb conveying the mentioned event.”@en
325

326 Class: nwr:VerbForm
327 EquivalentTo: { nwr:vform infinitive , nwr:vform gerund, nwr:vform participle , nwr:vform none }
328 Annotations: rdfs:label ”verb form”@en,
329 rdfs:comment ”Enumeration of verb forms.”@en
330

331 Individual: nwr:vform infinitive Individual: nwr:vform gerund
332 Individual: nwr:vform participle Individual: nwr:vform none
333

334 ObjectProperty: nwr:polarity
335 Domain: nwr:EventMention Range: nwr:Polarity Characteristics: Functional
336 Annotations: rdfs:label ”polarity ”@en,
337 rdfs:comment ”Specifies the polarity of the mentioned event.”@en
338

339 Class: nwr:Polarity
340 EquivalentTo: { nwr:polarity pos , nwr:polarity neg }
341 Annotations: rdfs:label ”polarity ”@en,
342 rdfs:comment ”Enumeration of event polarities (either positive or negative). ”@en
343

344 Individual: nwr:polarity pos Individual: nwr:polarity neg
345

346 ObjectProperty: nwr:mood
347 Domain: nwr:EventMention Range: nwr:Mood Characteristics: Functional
348 Annotations: rdfs:label ”mood”@en,
349 rdfs:comment ”Specifies the mood of the verb conveying the mentioned event.”@en
350

351 Class: nwr:Mood
352 EquivalentTo: { nwr:mood indicative, nwr:mood conditional, nwr:mood subjunctive,
353 nwr:mood imperative, nwr:mood none }
354 Annotations: rdfs:label ”mood”@en,
355 rdfs:comment ”Enumeration of verb moods.”@en
356

357 Individual: nwr:mood indicative Individual: nwr:mood conditional Individual: nwr:mood subjunctive
358 Individual: nwr:mood imperative Individual: nwr:mood none
359

360 DataProperty: nwr:modality
361 Domain: nwr:EventMention Range: xsd:string Characteristics: Functional
362 Annotations: rdfs:label ”modality”@en,
363 rdfs:comment ”Conveys different degrees of modality of an event. Its value is the lemma of the modal
364 verb modifying the main event, e. g., may (English), potere (Italian), poder (Spanish). ”@en
365

366 # ATTRIBUTES OF TIME MENTIONS
367

368 DataProperty: nwr:value
369 Domain: nwr:TimeMention Range: xsd:string Characteristics: Functional
370 Annotations: rdfs:label ”value”@en,
371 rdfs:comment ”Specifies the normalized value of a temporal expression using the ISO−8601 standard.”

@en
372

373 ObjectProperty: nwr:timeType

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 60/61

374 Domain: nwr:TimeMention Range: nwr:TIMEX3Type Characteristics: Functional
375 Annotations: rdfs:label ”time type”@en,
376 rdfs:comment ”Specifies the type of time expressed by a time mention.”@en
377

378 Class: nwr:TIMEX3Type
379 EquivalentTo: { nwr:timex3 date, nwr:timex3 time, nwr:timex3 duration, nwr:timex3 set }
380 Annotations: rdfs:label ”TIMEX3 type”@en,
381 rdfs:comment ”Enumeration of TIMEX3 temporal expression types.”@en
382

383 Individual: nwr:timex3 date Individual: nwr:timex3 time
384 Individual: nwr:timex3 duration Individual: nwr:timex3 set
385

386 # ATTRIBUTES OF RELATION MENTIONS
387

388 ObjectProperty: nwr:arg1
389 Domain: nwr:RelationMention Range: nwr:EntityMention Characteristics: Functional
390 Annotations: rdfs:label ”arg1”@en,
391 rdfs:comment ”Specifies the first argument of a relation mention.”@en
392

393 ObjectProperty: nwr:arg2
394 Domain: nwr:RelationMention Range: nwr:EntityMention Characteristics: Functional
395 Annotations: rdfs:label ”arg2”@en,
396 rdfs:comment ”Specifies the second argument of a relation mention.”@en
397

398 ObjectProperty: nwr:signal
399 Domain: nwr:RelationMention Range: nwr:SignalMention Characteristics: Functional
400 Annotations: rdfs:label ”signal ”@en,
401 rdfs:comment ”Associates a relation mention to the signal mention denoting the existence of the
402 relation . ”@en
403

404 ObjectProperty: nwr:relType
405 Domain: nwr:TLink Range: nwr:TLinkType Characteristics: Functional
406 Annotations: rdfs:label ”relation type”@en,
407 rdfs:comment ”Specifies the type of TLink relation . ”@en
408

409 Class: nwr:TLinkType
410 EquivalentTo: { nwr:rel before , nwr:rel after , nwr:rel includes , nwr:rel is included , nwr:rel simultaneous ,
411 nwr:rel iafter , nwr:rel ibefore , nwr:rel begins , nwr:rel ends , nwr:rel begun by ,
412 nwr:rel ended by , nwr:rel measure }
413 Annotations: rdfs:label ”TLink type”@en,
414 rdfs:comment ”Enumeration of TLink types.”@en
415

416 Individual: nwr:rel before Individual: nwr:rel after Individual: nwr:rel includes
417 Individual: nwr:rel is included Individual: nwr:rel simultaneous Individual: nwr:rel iafter
418 Individual: nwr:rel ibefore Individual: nwr:rel begins Individual: nwr:rel ends
419 Individual: nwr:rel begun by Individual: nwr:rel ended by Individual: nwr:rel measure
420

421 ObjectProperty: nwr:semRole
422 Domain: nwr:Participation Range: nwr:Role Characteristics: Functional
423 Annotations: rdfs:label ”semantic role ”@en,
424 rdfs:comment ”Specifies the semantic role played by thje object in the scope of a participation
425 mention.”@en
426

427 Class: nwr:Role # roles taken from FrameNet, PropBank and KYOTO
428 Annotations: rdfs:label ”role ”@en,
429 rdfs:comment ”Open enumeration of roles, taken from FrameNet, PropBank or KYOTO.”@en
430

431 ObjectProperty: nwr:dep
432 Domain: nwr:Participation Range: nwr:Dependency Characteristics: Functional
433 Annotations: rdfs:label ”dependency”@en,
434 rdfs:comment ”Specifies the kind of dependency among the object and event mentions in the scope of a
435 participation mention.”@en
436

437 Class: nwr:Dependency
438 EquivalentTo: { nwr:en subj , nwr:en obj, nwr:en indcompl, nwr:en predcompl subj, nwr:en predcompl obj,

NewsReader: ICT-316404 July 16, 2013

Knowledge store design 61/61

439 nwr:en rmod, nwr:en subjpass, nwr:en indcomplpass, nwr:en undef, nwr:es subj , nwr:es obj ,
440 nwr:es indcompl, nwr:es predcompl subj , nwr:es predcompl obj, nwr:es rmod, nwr:es subjpass ,
441 nwr:es indcomplpass, nwr:es undef, nwr:du subj, nwr:du obj, nwr:du indcompl,
442 nwr:du predcompl subj, nwr:du predcompl obj, nwr:du rmod, nwr:du rmod, nwr:du subjpass,
443 nwr:du indcomplpass, nwr:du undef, nwr:it subj , nwr:it obj , nwr:it indcompl ,
444 nwr:it predcompl subj , nwr:it predcompl obj , nwr:it rmod, nwr:it subjpass , nwr:it indcomplpass ,
445 nwr:it undef }
446 Annotations: rdfs:label ”dependency”@en,
447 rdfs:comment ”Enumeration of dependencies, specific to each language.”@en
448

449 Individual: nwr:en subj Individual: nwr:en obj Individual: nwr:en indcompl
450 Individual: nwr:en predcompl subj Individual: nwr:en predcompl obj Individual: nwr:en rmod
451 Individual: nwr:en subjpass Individual: nwr:en indcomplpass Individual: nwr:en undef
452 Individual: nwr:es subj Individual: nwr:es obj Individual: nwr:es indcompl
453 Individual: nwr:es predcompl subj Individual: nwr:es predcompl obj Individual: nwr:es rmod
454 Individual: nwr:es subjpass Individual: nwr:es indcomplpass Individual: nwr:es undef
455 Individual: nwr:du subj Individual: nwr:du obj Individual: nwr:du indcompl
456 Individual: nwr:du predcompl subj Individual: nwr:du predcompl obj Individual: nwr:du rmod
457 Individual: nwr:du rmod Individual: nwr:du subjpass Individual: nwr:du indcomplpass
458 Individual: nwr:du undef Individual: nwr:it subj Individual: nwr:it obj
459 Individual: nwr:it indcompl Individual: nwr:it predcompl subj Individual: nwr:it predcompl obj
460 Individual: nwr:it rmod Individual: nwr:it subjpass Individual: nwr:it indcomplpass
461 Individual: nwr:it undef
462

463 # STATEMENTS
464

465 Class: ks:Statement
466 Annotations: ks:storedAttribute nwr:crystallized ,
467 ks:storedAttribute nwr:confidence ,
468 ks:storedAttribute <http://purl. org/dc/terms/source>,
469 ks:storedAttribute <http://www.w3.org/2000/01/rdf−schema#comment>
470

471 DataProperty: nwr:crystallized
472 Domain: ks:Statement Range: xsd:boolean Characteristics: Functional
473 Annotations: rdfs:label ”crystallized ”@en,
474 rdfs:comment ”Specifies whether a statement has been crystallized (i . e., it can be considered as
475 background knowledge).”@en
476

477 DataProperty: nwr:confidence
478 Range: xsd:decimal
479 Annotations: rdfs:label ”confidence”@en,
480 rdfs:comment ”Specifies a confidence value on a 0−1 scale. ”@en
481

482 # CONTEXTS
483

484 Class: ks:Context
485 Annotations: ks:storedAttribute sem:accordingTo,
486 ks:storedAttribute sem:hasBeginTimeStamp,
487 ks:storedAttribute sem:hasEndTimeStamp
488

489 # DISJOINTNESS CONSTRAINTS
490

491 DisjointClasses: ks:Resource, ks:Mention, ks:Entity , ks:Statement, ks:Context, nfo:FileDataObject , nwr:NAFLayer,
492 nwr:ValueType, nwr:SyntacticType, nwr:ReferenceType, nwr:EntityType, nwr:EventType, nwr:PartOfSpeech,
493 nwr:Tense, nwr:Aspect, nwr:VerbForm, nwr:Polarity , nwr:Mood, nwr:TIMEX3Type, nwr:TLinkType, nwr:Dependency
494 DisjointClasses: nwr:News, nwr:NAFAnnotation
495 DisjointClasses: nwr:SignalMention, nwr:ValueMention, nwr:EntityMention, nwr:RelationMention
496 DisjointClasses: nwr:ObjectMention, nwr:TimeOrEventMention
497 DisjointClasses: nwr:EventMention, nwr:TimeMention
498 DisjointClasses: nwr:TLink, nwr:CLink, nwr:SLink, nwr:Participation

NewsReader: ICT-316404 July 16, 2013

	Table of Revisions
	1 Introduction
	1.1 The KnowledgeStore Vision
	1.2 Role of the KnowledgeStore in NewsReader
	1.3 Content of this Deliverable

	2 The KnowledgeStore Data Model
	2.1 Data model design
	2.2 Data model configuration for NewsReader

	3 The KnowledgeStore Interfaces
	3.1 API Design Criteria
	3.2 Operations Categories
	3.2.1 Intra-layer Operations
	3.2.2 Inter-layer Operations

	4 The KnowledgeStore Architecture
	4.1 Architectural overview
	4.2 KnowledgeStore internal architecture
	4.2.1 The HBase & Hadoop component
	4.2.2 The Triple Store
	4.2.3 The Frontend

	5 Related Work
	5.1 Related approaches
	5.2 Related technologies

	6 Conclusions and Future Work
	A API Specification
	A.1 Intra-layer Operations
	A.1.1 Operations on Resources Representations
	A.1.2 CRUD Operations
	A.1.3 SPARQL Access to Statements

	A.2 Inter-layer Operations

	B Core Data Model Ontology
	C NewsReader Data Model Ontology

