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Executive Summary

This deliverable describes the first cycle of tasks T02.1 “Overall architecture”, T02.2 “Data
Structures and representation formats”, T02.3 “Software modules and APIs” and T02.4
“Scaling requirements” (25PM of effort). It shows the first prototype of the NewReader
system for processing, integration and visualization of complex event structures extracted
from a large set of documents. The deliverable describes a first approach for scalable NLP
and presents a proposal for an architecture for streaming processing of huge textual data.
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1 Introduction and scope

This deliverable describes the first version of the System Design framework developed
in NewsReader to process large and continuous streams of English, Dutch, Spanish and
Italian news articles. The goal of the NewsReader project1 is to automatically process
massive streams of daily news in 4 different languages to reconstruct longer term story
lines of events. For this purpose, the project will extract events mentioned in the the news
articles, the place and date of their occurrence and who is involved. Based on the extracted
knowledge, NewsReader will reconstruct a coherent story in which new events are related
to past events. The research activities conducted within the project strongly rely on the
automatic detection of events, which are considered as the core information unit underlying
news and therefore any decision making process that depends on news articles.

The NewsReader architecture for NLP processing integrates a large number of tools
which relate to various research areas such as Information Retrieval and Extraction, Nat-
ural Language Processing, Text Mining or Natural Language Understanding. Within the
project we distinguish two main types of linguistic processing: inter-document linguistic
processing and cross document linguistic processing. Inter-document linguistic processing
involves the linguistic processing of a single text document, and comprises steps such as
tokenization, lemmatization, part-of-speech tagging, parsing, word sense disambiguation,
Named Entity and Semantic Role Recognition for all the languages in NewsReader. Be-
sides, Named entities are linked as much as possible to external sources such as Wikipedia
and DBpedia. Details of the NLP modules used in the project are described in project
deliverable D4.2 “Event Detection, version 1”2. We have defined a common annotation
scheme, the NLP Annotation Format (NAF) which serves as a shared model that allows
these NLP tools to cooperate. NAF is multi-layered, stand-off annotation scheme based
on XML which allows the representation of a great variety of linguistic information in a
common way. Specific input and output wrappers have been also developed or adapted to
work with the new formats and APIs.

Cross document processing involves steps such as document clustering or linking tex-
tual expressions, i.e. mentions, from several documents which refer to the same entity or
event, creating together chains of coreferring mentions. Events and their relations needs to
be represented using formal semantic structures in an extremely compact and compressed
form, eliminating duplication and repetition, detecting event identity, completing incom-
plete descriptions, and finally chaining and relating events into plots (temporal, local and
causal chains). Abstraction over different mentions of the same events, participants, places
and times results in a single representation of an instance with links to the places where
it is mentioned in the news. We have designed an annotation format called Grounded An-
notation Framework (GAF, [Fokkens et al., 2013]), which formally distinguishes between
mentions in NAF and instances in the Simple Event Model (SEM, [van Hage et al., 2011]).

The NewsReader project will follow a streaming computing paradigm, where documents

1FP7-ICT-316404 ”Building structured event indexes of large volumes of financial and economic data
for decision making”, www.newsreader-project.eu/

2http://www.newsreader-project.eu/files/2012/12/NewsReader-316404-D4.2.pdf
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will arrive at any moment and have to be processed continuously. The project foresees the
processing of huge amounts of textual data at any rate. In this deliverable we describe
the scaling solution used in the first year of the project. We also report the results of
analyzing circa 65.000 documents using the NewsReader system where the NLP modules
are deployed on several machines and distributed among different places. We also describe
the proposal for the second version of the architecture which fully implements a streaming
computing architecture.

The result of the day-by-day processing of large volumes of news and information is
stored in the KnowledgeStore central data repository, which plays a crucial role in the
NewsReader architecture. We present the implementation of the first version of the Knowl-
edgeStore, a framework that contributes to bridge the unstructured and structured worlds,
enabling to jointly store, manage, retrieve, and semantically query its contents.

Finally, as a result of the NLP processing, the project will generate highly dense and
dynamic structural data. The ultimate goal of the project is to assist professional decision
makers to make well informed decisions, based on the knowledge NewsReader can offer to
them. We present the first version of the Decision Support System (DSS), which is meant
to provide insight into the sequences of events that led up to a current situation so that a
user can extrapolate to what might happen in the future.

This deliverable is structured as follows. Section 2 describes the main requirements
for all the components of the NewsReader architecture, including an study of state-of-
the-art technologies on Big Data processing. Section 3 presents the main architecture of
NewsReader, including the annotation formats used within the project. Section 4 shows
the NewsReader pipeline implemented in the first year of the project, showing the results
of the linguistic processing performed so far. The first version of the KnowledgeStore is
described in Section 5, and Section 6 describes the Decision Support System. Finally, 7
draws some conclusions and future work.

NewsReader: ICT-316404 January 10, 2014
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2 System requirements

In this section, we will describe the system requirements of the NewsReader project. These
requirements constitute the general desiderata that need to be fulfilled for the project, and
will thus guide the design of the general architecture and main technological choices.

As stated in the introductory section, NewsReader aims to identify the event mentions
across documents in four different languages: English, Dutch, Spanish and Italian. In
addition, NewsReader will extract information about the event’s participants, temporal
constraints and locations. Factuality3 of event mentions will also be extracted, as well as
the authority of the source. Therefore, provenance information about all the knowledge
extracted within the project has to be recorded.

Based on the extracted knowledge, NewsReader will reconstruct a coherent story in
which new events are related to past events. Events and their relations will be repre-
sented using formal semantic structures in an extremely compact and compressed form,
eliminating duplication and repetition, detecting event identity, completing incomplete de-
scriptions, and finally chaining and relating events into plots (temporal, local and causal
chains).

NewsReader will use the economic and financial domain for evaluation purposes. We
foresee up to five-hundred-thousand news items and websites within this domain each day
which can be potentially relevant for professionals working in this sector. The project
has to process these data streams on a day-to-day basis using natural-language-processing
(NLP) techniques to extract the economic-financial events from the text. We will process
large volumes of news and information and store the outcome in a knowledge base, the
KnowledgeStore, in which each event is unique, connected to time and place and connected
to many other events.

Based on the above, we can summarize the main requirements as follows:

• NewsReader will show how large volumes of textual data can be processed within
the given time-constraints and how the output can be stored efficiently in a database
that captures the essential information about who, what, when and where. More
specifically this involves:

– Processing data in four languages, as well as storing event data (i.e. the out-
come of event detection, processing and reasoning) using the KnowledgeStore
technology.

– Inter-connecting a large number of NLP modules for state-of-the-art event ex-
traction modules so that they can be integrated into a common NLP processing
architecture.

– Handling long-term diachronic cumulation of events, integrating the new with
the old.

3Factuality information is useful for recognizing whether the events mentioned in the text actually
happened, did not happen, or there is some uncertainty about the event occurring or not.
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– Handling the daily stream of new incoming data, which involves the updating
of the KnowledgeStore.

– Demonstrate the scalability of the KnowledgeStore solution to eventually handle
billions of documents in different languages.

• In order to be useful in the decision-making application scenario of the project, the
content of the KnowledgeStore has to be accessible in an effective way. To achieve
this goal, we will develop innovative visualization techniques for events, their internal
structure and their relations to other events, that will graphically and adequately
display the content of the KnowledgeStore. More specifically this will involve:

– Querying and reasoning over huge and dense semantic graphs of data to obtain
correct, complete and relevant results.

– Combining the output of querying the KnowledgeStore with queries over struc-
tured data.

– Visualization of complex event structures, which immediately shows the impor-
tant implications and supports interaction and manipulation to access more/other
data when needed.

– Interaction of users with the visual representations to support their search for
evidence in decision processes.

2.1 Big data requirements

Nowadays there is a continuous increase of computational power needs due to an over-
whelming flow of textual data. This calls for a paradigm shift in computing architecture
and large scale data processing. As mentioned above, NewsReader foresees a huge flow of
news items per day which have to be processed in a reasonable time frame (one or few
hours). The project faces thus an important challenge regarding the scalability of linguistic
processing of texts.

The challenges NewsReader faces fall into a new class of the so called “Big Data”
tasks. These tasks require large scale and intensive processing and must be able to scale
efficiently to very big volumes of data [Yu and Chen, 2013; McCreadie et al., 2013; Sakr
et al., 2013]. MapReduce [Dean and Ghemawat, 2008a] is a popular programming model
framework designed to perform large scale computations. It is able to scale to thousand of
nodes in a fault-tolerant manner. However, MapReduce follows a batch processing model,
where computations start and end within a given time frame. Batch processing is not well
suited to working with the form of underlying data the NewsReader project is faced with,
due to their lack of responsiveness [Brito et al., 2011].

Streaming computing [Alon et al., 1996; Neumeyer et al., 2010] represents an alternative
programming model for dealing with a continuous flow of data (streams) which require
very high levels of data throughput and a low level of response latency. This programming
model assumes that data is presented to the algorithm as one or more input streams

NewsReader: ICT-316404 January 10, 2014
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Figure 1: A Hadoop cluster.

that are processed in order, and only once. The NewsReader architecture fits under this
programming model, as we expect NewsReader to continually receive news which have to
be processed and integrated into the KnowledgeStore.

In the following sections, we will briefly analyze some of the most widely used frame-
works for massive data processing. We will start describing the Hadoop framework for
batch processing. Hadoop is not the architecture of choice for NewsReader but we describe
it nonetheless because of its relevance in the big data ecosystem. We then focus on two of
the most widely used frameworks for streaming computing, namely Storm and Yahoo S4.
We finally describe —and justify— the main choice taken in the project regarding which
framework to use.

Hadoop

Hadoop is a framework for storage and large-scale processing of data sets on clusters of
commodity hardware. It is an alternative, open-source, implementation of the MapReduce
algorithm. A specific file system called Hadoop Distributed File System (HDFS) is also
part of the project. HDFS is derived from the Google File System (GFS).

Hadoop programs are executed in clusters of computers that are inter-connected by
switches. Computers that are connected by the same switch are located in the same
rack.Two different type of nodes are found in a hadoop system: one single master node and
multiple worker nodes. As Figure 14 shows, each node contains modules needed both by the
MapReduce algorithm and the HDFS. The master node consists of four components. The
JobTracker and NameNode control MapReduce and HDFS related processes, respectively.
The DataNode and TaskTracker are responsible for storing data and executing MapReduce
functions, respectively. Each worker node works as both a DataNode and a TaskTracker.

Different file systems have been used along with Hadoop, but HDFS is the most common
system, since it was developed specifically for Hadoop.

4Taken from http://bit.ly/19gNBd9

NewsReader: ICT-316404 January 10, 2014
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Hadoop MapReduce

MapReduce was designed and implemented by Google. Hadoop MapReduce is an open-
source implementation which has been widely used during the last few years. This algo-
rithm arose from the need of the Google company to run straightforward programs with
very large input data sets. This led to designing a solution which runs their programs dis-
tributed across a large cluster of machines. The biggest part of the efforts focused on issues
such as parallelization, distribution of data, synchronization between nodes, load balancing
and fault tolerance. Therefore, a new library was designed, which would hide from the user
all the logic about aforementioned issues, letting programmers concentrate their efforts on
their application logic. One of the most important characteristic of MapReduce is that it
fits well with batch processing systems, whereas it leads to serious problems for realtime
streaming processing systems.

The user of the aforementioned library needs to implement two types of functions: map
functions and reduce functions. A map function takes a key/value pair and produces a
set of intermediate key/value pairs. Reduce functions receive all the intermediate pairs
grouped by the key value, and produce new pairs as output. The final output is available
in several output files, one for each reducer task. The algorithm is illustrated in Figure 2.5

For instance, consider the problem of counting the occurrences of each word in a doc-
ument. Map functions would take each line of the document as the value and the offset of
the beginning of the line as the key. Then, it would emit a new intermediate pair for each
word in the line, consisting of the word itself and the number of occurrences in that line.
Each reducer would take all the occurrences of a word, and would emit the sum of them.

The library is fault tolerant; it knows how to react when a worker node or even the
master node fails. The master pings the workers periodically and, if a worker does not
respond, it is marked as failed. When a worker fails, all the map tasks completed by the
worker have to be re-executed, since their output is stored in the local disk and is therefore
inaccessible. All tasks in progress are also reset. The master node writes checkpoints of
its internal status periodically. When the master node fails, it will be restarted from the
last checkpoint.

The file system stores several copies (3 by default) of each file-block across the cluster.
To reduce bandwidth usage, the master node attempts to assign each map task to a worker
containing one of the copies of the corresponding input data.

The user chooses the number of map and reduce tasks that will be created. It is
therefore important to take into account what the granularity will be. As a general rule,
it is better to have many more map and reduce tasks than machines in the cluster. This
way it is easier to take advantage of the load balancing, and it is easier to migrate tasks
when a node fails.

5Taken from [Dean and Ghemawat, 2008b]
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Figure 2: MapReduce execution overview.

The Hadoop Distributed File System

When Google first implemented MapReduce, the Google File System (GFS) was used.
Hadoop, instead, uses the Hadoop Distributed File System (HDFS), which is inspired by
GFS. The HDFS, besides offering persistence, improves availability and data durability
and helps returning to the desired status when a node or a rack fails, resulting in overall
better performance. While the interface is similar to the UNIX file system, standards were
sacrificed in favor of performance for applications.

The HDFS consists of two types of nodes and a client to access the file system. The
NameNode is the main node, similar to the master node in MapReduce. This node stores
the hierarchy of the directories and files in memory. Each file is split in blocks (typically
128 MB), and each block is replicated three times through the cluster. Replicated blocks
are stored in different DataNodes. Besides, the file system tree, the NameNode keeps
the mapping between file blocks and the DataNodes containing the file blocks in memory.
Therefore, when the clients needs to read a file, it first has to ask the NameNode for the
location of the DataNodes containing the blocks of the file.

The DataNodes are the nodes where all the data blocks are stored. To store a block, two
physical files are needed, one for data and another one for metadata. NameNodes have to be
subscribed to the NameNode. It is made by a handshake, a process where the NameNode
is prepared to settle in the file system. The communication between nodes is made by
sending heartbeats. The NameNode responds to the heartbeats sending instructions to
the DataNodes. If the NameNode doesn’t receive any heartbeat from a DataNode in a
specific lapse of time, the latter is marked as failed.

NewsReader: ICT-316404 January 10, 2014
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The applications access the file system using the HDFS client. It supports operations for
creating, reading and deleting files as well as creating and deleting directories. The client
asks the NameNode for the locations of the DataNodes for each read/write operation.

When a new block is written, the HDFS stores three replicas of the same block. The
replicas are stored in different machines in different racks. This improves availability and
recoverability when a given node or even an entire rack fails. A balancer tool is offered
for the situations when the stored data is irregularly distributed across the cluster, for
instance because new machines have been added after initializing the cluster.

S4: Distributed Stream Computing Platform

S4 is an open source, general-purpose, distributed, scalable and partially fault-tolerant
platform for developing distributed programs for processing continuous streams of data.
This engine was inspired by the MapReduce algorithm, but oriented for streaming process-
ing. An attempt to adapt Hadoop for an application where large realtime streams of data
were received failed, and it was concluded that a library that would work for both batch
and stream processing was not viable. S4 offers the flexibility to deploy new algorithms
as needed in research environments, while scalability and high availability requested by
production environments are taken into account.

The main units in the design of this system are the Processing Elements (PEs). The
PEs encapsulate the functionality of each logical piece of processing. The only way of
communication between PEs is by sending messages, making the system derive from a
combination of MapReduce and the Actors model. A high level of encapsulation and
transparency is achieved by this model, resulting in a high level of simplicity.

Processing Elements are defined by the following four features: its functionality, the
type of events it consumes, the keyed attribute in those events and the value of the keyed
attribute. Each PE consumes all the events that fulfill the mentioned features. Special
PEs are available, with no key defined, which consume all the events of the corresponding
type. There are several ready-to-use PEs available with different functionalities (sort, join,
filter...). Creating custom PEs is easy and simple. Since stream computing processes do
never end (unless the user kills them), the PEs are created with a given amount of time to
live. After the specified period of time is expired, the PE is eligible for removal.

The Processing Nodes (PNs) are the logical containers of the PEs. As shown in Fig-
ure 3,6 these nodes make use of the communication layer to listen to events and dispatch
new events. The communication layer is an abstraction layer that manages the cluster
and enables the PNs to communicate between them being unaware of physical nodes.
ZooKeeper is used for communication inside the cluster.

S4 lacks a cluster balancing system, making the system unbalance over time.

6 Taken from [Neumeyer et al., 2010]
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Figure 3: Internal structure of a processing node in S4.

Storm

Storm was created to satisfy the needs of a distributed and scalable realtime computation
framework. Previous existing similar frameworks were batch computing oriented, and were
not suitable for stream oriented computing. The design goals followed by Storm are the
follows:

• Make the design friendly and easy to understand.

• Provide a simple Programming Interface for processing data streams.

• Design a scalable cluster with high availability using commodity hardware.

• Minimize latency supporting local memory reads and avoiding disk I/O bottlenecks.

Systems implemented with Storm are easily scalable by adding new commodity hard-
ware to the cluster. There is no need to change the algorithms. In the words of its creators
“Storm’s small set of primitives satisfy a stunning number of use cases.”7. Whilst being
similar to S4, one of the biggest differences between them is that Storm guarantees that no
data will be lost. Compared to Hadoop, Storm is easier and simpler to use. Other Storm
features are failure tolerance and the possibility of programming modules written in any
programming language available.

The main abstraction structure of Storm is the topology. The topology represents the
logical graph of the application. Each node of the graph is a processing component for a
given task, while the edges are the paths each data-tuple makes. Input data comes from
one or more data streams represented each of them as a sequence of tuples. Two types
of processing components can be found in a Storm topology: spouts and bolts. Spouts
are commonly the first component taking part in a topology. A spout creates the stream,
an unbounded sequence of tuples, and sends them to the next component in the topology.

7http://bit.ly/18TEteL, accessed December 12, 2013.
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Figure 4: A Storm worker process containing several executors and tasks.

The other components are the bolts. Bolts are the most common processing components
in topologies. They take input tuples sent by spouts or other bolts, and emit new output
tuples to the next bolt.

When it comes to the issue of cluster management, Storm uses a centralized model
like Hadoop. There is a master node, called Nimbus, and multiple worker nodes, known
as Supervisors. The Nimbus is responsible for creating Supervisor instances through the
cluster and assigning a task or a set of tasks to each of them. It is also its job to monitor
the cluster for failures. Supervisors manage all the input and output events of a worker
node and starts/stops task processes as necessary. Storm, like S4, also uses ZooKeeper to
manage communication inside the cluster.

Three different types of entities are distinguished in Storm: worker processes, executors
and tasks. Worker processes are the logical containers for components. Each worker is
physically a single JVM and contains part of the topology. An executor is a thread spawned
by the corresponding worker process. It may run one or more tasks for a spout or bolt in
the topology. A task is an instance of a spout or a bolt. Each spout or bolt can have several
copies across the cluster. By default one single task is executed per executor, though it is a
user-configurable value. Figure 48 shows the relation between worker processes, executors
and tasks.

A Storm topology processes data as it comes, as it is a realtime computing framework.
Therefore, there is no file system nor any kind of persistence system offered along with
the framework. If persistence is needed by an application, external NoSQL databases like
Cassandra or Mongo DB are common solutions.

Within the NewsReader project we decided to use the Storm framework for imple-
menting the scalable architecture. The reasons which lead us to take this decision are the
following:

• Storm follows a streaming programming paradigm instead of a batch type processing.
As NewsReader will process documents continuously on a daily basis, this require-

8Taken from http://bit.ly/19gO139
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ment is a must.

• Storm integrates easily with “NoSQL” type of databases, such as HBase and Cas-
sandra. Because one of the main components of the KnowledgeStore is precisely the
HBase component, we foresee an easy integration between the Storm pipeline and
the KnowledgeStore.

• Storm supports a large number of programming languages, unlike Hadoop or S4,
which only support packages programmed in Java. Therefore, Storm offers great
flexibility to integrate a great variety of NLP components.

• Storm is a mature framework with a growing and vibrating user-base. For instance,
while the S4 mailing list9 contains about 500 messages in total, the Storm mailing10

list has more than 5.000.

Section 4 describes the use of the Storm framework in the NewsReader architecture
for the processing in the first year, as well as the design of a fully parallel Storm pipeline
designed for the second year of the project.

2.2 Linguistic processing requirements

NewsReader needs deep linguistic processing to achieve its main goals. Event extraction
is a complex task which involves various areas of Natural Language Processing and Text
Mining. NewsReader aims to make a leap and integrate current state-of-the-art NLP
processing tools into a common platform. Besides, the NewsReader project has to process
large volumes of textual data within tight time constrains.

Within the NewsReader project, we distinguish two types of linguistic processing,
namely, inter-document and cross-document processing. Inter document processing in-
volves the linguistic processing of a single document, and comprises modules which range
from tokenization to event coreference or factuality analysis. Cross document process-
ing involves dealing with multiple documents and comprises tasks such as clustering and
cross-document event coreference.

From a system design point of view, the linguistic processing requirements lead to the
following questions which have to be addressed:

• Design a linguistic annotation format to allow for interoperability among the NLP
processors. The format should be able to integrate a wide range of linguistic informa-
tion (named entities, event coreference, semantic roles, opinions, etc.) and use RDF
compatible representations whenever possible to facilitate communication with the
KnowledgeStore. Besides, the format should be a suitable format to work on a large
scale, distributed and parallel data processing NLP environment which can process
thousand of documents every day. Finally, it should be easy to integrate other kind

9http://mail-archives.apache.org/mod_mbox/incubator-s4-user/
10https://groups.google.com/d/forum/storm-user
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of information in the format, so that the tools used in NewsReader can be integrated
directly in other pipelines for other projects.

• According to project deliverable D4.2 “Event Detection, version 1”,11 the NLP mod-
ules integrated into the NewsReader system should fulfill the following requirements:

– Modular: Unlike other NLP toolkits, which often are built in a monolithic
architecture, the modules should follow a data centric architecture so that mod-
ules can be picked and changed (even from other NLP toolkits). The modules
should behave like Unix pipes, taking standard input, do some annotation, and
produce standard output which in turn is the input for the next module.

– Efficient and Accurate: The modules should be as efficient as possible, both
in processing time as well as in the quality of the annotations they produce.

– Multilingual: When possible, NLP modules should be parametrizable as to
allow for linguistic processing on more than one language.

• Analyze the optimal implementations and configurations of our modules: grouped as
virtual machines, interacting with the KnowledgeStore, using client-server architec-
tures for modules that use large background models, etc.

• Decide the optimal design for processing documents and sentences from documents
in parallel, exploiting the non-dependencies of certain modules.

2.3 KnowledgeStore requirements

As mentioned in the previous sections, NewsReader needs to efficiently store all the output
produced by the linguistic processing tools in such a way that all the essential information
about events and related information (who, what, when and where) can be easily and
effectively accessed. As NewsReader aims to deal with billions of documents in different
languages, efficient storage and effective retrieval are indeed key factors for its success.

The place were all the content is stored and can be accessed is the KnowledgeStore. A
brief introduction to the KnowledgeStore is provided in Section 5, while a more detailed
description is available in Deliverables D6.1 and D6.2.1.

From a system design point of view, the KnowledgeStore impose the following require-
ments on the NewsReader system infrastructure:

• (scalability) Given the number of documents and semantic content expected to be
handled by the KnowledgeStore, a distributed infrastructure is required. In particular,
given the typology of resources to be handled, and the kind of access to them, an IT
ecosystem composed of

– a Hadoop cluster

11http://www.newsreader-project.eu/files/2012/12/NewsReader-316404-D4.2.pdf
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– a HBase cluster,

– a triple store server (Virtuoso), and

– a KnowledgeStore front-end server that orchestrate the storing of data among
the first three components,

is foreseen12.

• (accessibility) The KnowledgeStore is fundamentally a storage server, therefore the
interaction with the other modules of the system should occur according to a client-
server paradigm. In particular, a network infrastructure is needed so that the various
modules can access the HTTP ReST API offered by the KnowledgeStore.

• (querying and reasoning) To achieve its goals, NewsReader needs to check the con-
sistency, completeness and factuality of the events and events related information
extracted from the documents. This requires the KnowledgeStore to support queries
and reasoning over a huge and dense semantic content—stored according to Semantic
Web best practices—which in turn requires the availability in the IT infrastructure
of a triple store server (e.g. Virtuoso)—a state of the art storage server enabling
querying and reasoning over Semantic Web content—supporting the aforementioned
tasks.

• (performance) As the NewsReader system is expected to (i) process a vast quantity
of daily news, and (ii) support online access through the decision support tool suite,
the KnowledgeStore has stringent requirements on the system infrastructure to be set
up. Indeed, to achieve the expected performances, robust hardware resources are
needed. In particular, the machines in the IT infrastructure has to be equipped with
fast disks (in particular to support the fast loading and retrieval of large quantity
of data), large memory (especially to support efficient querying of the triple store
server), and fast network communication (to support bottleneck-less communication
among the different clustered machines).

12More details are provided in Section 5

NewsReader: ICT-316404 January 10, 2014



System Design, draft 24/115

NewsReader: ICT-316404 January 10, 2014



System Design, draft 25/115

3 General Architecture

This section provides an overview of the general architecture in NewsReader. We describe
the relative order of processes and how different components of the architecture commu-
nicate with each other. Representation formats play a major role in the communication
between components. We have developed two new representation formats and extended an
existing representation model to fulfill the requirements for NewsReader. We will describe
both the overall setup and the representation formats employed by NewsReader.

In Section 2, we described the system requirements for NewsReader. Our architecture
must have the following properties in order to fulfill these requirements:

1. Modularity. Extracting events and establishing relations between them is a complex
task. Several NLP tasks need to executed to come to our final result and we aim
to do this for four languages. It should be easy to integrate these modules in the
overall architecture. It should also be easy to exchange modules, either for language
indepedendent components to communicate with language specific components of
different languages or to improve the overall outcome by experimenting with more
than one state-of-the-art module for a specific task.

2. Exchange. It should not only be easy to exchange information between NLP mod-
ules, but also between NLP modules and other resources. This applies in particular
to the KnowledgeStore. We want to cumulate information about events over time.
In order to do so, certain NLP modules, such as modules looking at event identi-
fication or named entity disambiguation, need to be able to communicate with the
KnowledgeStore. This allows us to use previously extracted information to improve
processing of new information.

3. Scalability. The idea behind NewsReader is that it is a news recorder which inter-
prets and stores all the news. The system should be designed in such a way that
it is easy to scale it up to the amount of data that must be processed in such a
scenario (LexisNexis estimates around 2 million documents per working day). The
same applies to the querying, reasoning and visualization modules that interact with
the KnowledgeStore. These modules should be able to handle vast amounts of data.

4. Portability. It should be easy to run the complete architecture at different loca-
tions. This is both needed to divide the processing load over different partners within
NewsReader as to allow third parties to experiment with our setup.

This section is structured as follows. Section 3.1 presents an overview of the architecture
of the entire process from the input data to the KnowledgeStore. It describes the relative
order of steps, possibilities of parallization and communication between the KnowledgeStore
and NLP modules. In Section 3.2, we introduce the NLP Annotation Format (NAF), the
representation format we use during NLP processing. In order to represent events, their
participants, locations, times and relations between them, we extended the Simple Event
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Model (SEM). This extended SEM (SEM+) is described in Section 3.3. SEM+ instances
and relations are related to analyses represented in NAF using the Grounded Annotation
Framework [Fokkens et al., 2013] (GAF). Section 3.4 provides an overall description of
this framework. In addition to information obtained by processing text, information from
structured data can be added to the KnowledgeStore.

3.1 A modular architecture

This section describes the overall architecture used in NewsReader. First, we will address
how NLP modules are packed in virtual machines (henceforth VM(s)). This decision is
based on (among others) interactions between modules, the basic units their processing
applies to and their dependencies (apart from those on other modules in our pipeline).
We will present these properties for NLP modules that are either used or likely to be
used in NewsReader after addressing VMs. First, a full overview of the modules that are
currently considered for NewsReader and planned setups are explained. This is followed
by a description of interactions between modules and the Knowledge Store. Finally, we
describe the setup that is currently used for processing.

3.1.1 Virtual Machines

Individual NLP modules may have different dependencies and installation requirements.
Besides, within the project we want to be able to replicate the result of NLP modules, that
is, one NLP module applied to a particular input text has to produce the same output
regardless the software framework (machine, operating system, etc.) where it is installed.
We thus pack the NLP modules into virtual machines (VMs) in order to handle this and
hence facilitate portability of the modules. Using VMs is a common practice among cloud
computing solutions having to deal with big quantities of data, and thus they give us a
proper foundation to build the processing architecture upon.

3.1.2 A flexible architecture

NLP modules are grouped on the basis of compatible settings and configuration and se-
quential dependencies for processing texts. Much can be gained in efficiency by applying
parallel processing where possible. This helps us to avoid bottlenecks around modules that
need more processing time than others. In NewsReader, we employ modules that work
on a sentence level, a document level and cross-document or cluster level. The level of
operation determines to what extend parallel processing can be applied.

Another factor that influences how we can group NLP modules is the dependency
between modules in the system. We will use the term NLP dependencies to refer to
dependencies between modules in our system. When talking about NLP dependencies, we
mean that a given module needs the output of another module as its input. This should
be distinguished from the usual case of dependency or coupling in software engineering
where a program module relies on other modules themselves and not on whether these
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module unit input output
IXA tokenizer document raw text sentences, tokens
Stanford tokenizer document raw text sentences, tokens
TokenPro document raw text sentences, tokens,

normalized tokens,
char position of tokens

IXA PoS tagger sentence tokens lemmas, PoS-tags
Stanford PoS tagger sentence tokens lemmas, PoS-tags
TextPro Pos tagger sentence tokens lemmas, PoS-tags
VUA WM tagger sentence tokens, lemmas, PoS multiwords
IXA Parser sentence raw text/lemmas, PoS constituents
Mate Parser sentence raw text/lemmas, PoS dependencies
Stanford Parser sentence raw text/lemmas, PoS dependencies, PS-trees,
ChunkPro Parser sentence raw text/tokens, PoS chunks
TimePro sentence tokens, PoS, chunks Timex3
IXA NER sentence lemmas, PoS named entities
EntityPro NER sentence tokens, lemmas, PoS named entities
UKB-WSD sentence lemmas, PoS synsets
SVM-WSD sentence tokens, terms tokens & terms with

(= lemma + PoS) word sense information
Spotlight NED sentence named entities (NEs) disambiguated NEs
Mate SRL sentence lemmas, PoS, dependencies semantic roles
Event classification sentence terms, dependencies, predicates, roles

time and location entities
Graph-based coref document lemmas, PoS, NE, entity coreferences

constituents
Entity coreference document entities, lemmas entity coreferences
Event coreference document semantic roles, lemmas event coreferences
Toponym resolution ?? tokens, NE toponym coordinates
VUA Factuality sentence tokens, PoS factuality
VUA Discourse document NITF (raw input) document structure
VUA opinion miner sentence tokens, terms, factuality, opinions

entities, constituents,
dependencies

Aggregation cluster lemmas, Timex3 coreferences, event-
semantic roles participant relations

Table 1: NewsReader modules for English and their properties

modules have been run on the data prior to running the module at hand. Coupling can
influence the possibility of placing modules in the same VM, because two modules may
have incompatible dependencies, in which case they cannot be placed in the same VM.
Since this is not a core factor in our research, we will not further elaborate on this issue
here.

The aforementioned NLP dependencies are of a more flexible nature than cases of
coupling. Typically, a NLP module needs certain information about the data in order to
work properly. This means that this information should be identified before the module
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applies and presented in a format that the module can read. In other words, when we
talk about a NLP dependency of a module, the module does not really depend on another
module, but rather on receiving specific input. In our scenario, where our input is raw data
newspaper text, this generally means that some module that provides this required input
must apply before the NLP module applies. NLP dependencies thus indicate the relative
order in which specific modules should apply.

The level of operation and NLP dependencies thus have an impact on the flexibility of
our system architecture. Flexibility provides possibilities of optimizing NLP processing.
We thus aim for maximal flexibility in our setup. Table 1 provides basic information about
modules either included in or intended for the NewsReader architecture. The column Mod-
ule provides the name of the module, unit stands for level of operation, input indicates
the information the module requires and output represents the information the module
provides. A more elaborate description of individual modules can be found in Deliverable
4.2.1 [Agerri et al., 2013]. The modules described in Table 1 all work for English. Alterna-
tive modules for other languages will have the same unit and input requirements in most
cases or else they will be very similar.

As mentioned above, the output of the tools is represented in NAF. This is a layered,
extensible format where each tool incrementally adds its output while maintaining all
information that was present in its input. If, for instance, a module needs named entities,
lemmas and PoS tags, we can relate its position in the architecture to the named entity
recognizers. The named entity recognizers also require lemmas and PoS tags, so their
output will always include this information.

Figure 5 represents a basic architecture taking the input requirements of individual
modules provided in Table 1 into account. The arrows in the figure represent NLP de-
pendencies, which can either apply to an individual module or to all modules included in
a group (represented by blocks in dashed lines). If more than one black arrow points to
a specific module or group, the output of all preceding modules is required. The green
arrow from raw text to the parser indicates a short cut: most parsers we work with can
either take raw text or tokenized text with PoS as their input. The discourse module is not
included in this picture, because there are no dependencies between this module and the
other modules of the system. It takes raw text as an input and none of the NLP modules
make use of its output. It can therefore be applied at any stage in the process.

Modules that are placed in the same group can be executed in parallel. The named
entity recognizers, parsers, factuality module and word sense disambiguators all take to-
kens, lemmas and PoS as their input. The named entity recognizer provides the necessary
input for resolving entities and determining coreference between them. The parsers provide
input for identifying time expressions (chunks) and semantic role labelling (dependencies),
which enables event coreference. Because the aforementioned modules requiring named
entities do not interact with those requiring syntactic information, these processes can also
be parallelized. Finally, event classification and the graph-based entity coreference module
combine information from the named entity recognizers and the parsers. The module that
identifies opinions also takes the output of the factuality module into account. Aggregation
cannot be parallelized with other processes, since it applies to a cluster of documents.
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Figure 5: Application order of modules (documents as smallest units)

The architecture presented in Figure 5 includes modules that can run on sentences,
complete documents and document clusters. If we follow this architecture, we assume
that modules that can be run on a sentence level also take complete documents as their
input. Modules that need complete documents as their input cannot be placed in a group
where parallel processing is applied on a sentence level. Figure 6 represents an alternative
architecture which separates modules that take documents as their basic input unit from
those that can work on a sentence level. This architecture is less flexible in the permitted
order of application of individual modules, but can nevertheless lead to more efficient
results. The efficiency of parsers is highly dependent on the length and complexity of the
input sentence. Optimizing processing on a sentence level can therefore lead to a significant
gain in efficiency. This may outweight what is lost by the additional restrictions separating
sentence level modules from document level modules.

The question of which architecture leads to the overall best results needs to be answered
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Figure 6: Application order of modules (sentences as smallest units)

empirically. It is dependent on a number of factors including the choice of modules for
specific tasks. The choice of modules and whether performance improves when the output
of more than one module is combined are research questions that require extensive empirical
investigation themselves. In NewsReader, we will consider the two architectures outlined
above as possible alternatives.

3.1.3 Interaction with the Knowledge Store

Figure 7 provides a simplified sketch of our overall architecture. The KnowledgeStore
is placed at the center: it is the place where incoming documents and results of NLP
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Figure 7: Simplified representation of NewsReader’s system architecture

processing are stored. At several stages, there may be interaction between modules and
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Modules KS components
Tokenization and sentence detection Resource
PoS tagger
Parser
?Time expressions Mention, Entity
Named Entity Recognition
?WSD client Mention, Entity
NED client
Coreference resolution (entities) Mention, Entity
Semantic Role Labeling
Event detection
Sentiment analysis Statement + Context
Factuality
?Event coreference Entity
Event relations
Story understanding

Table 2: Overview of interaction between the KnowledgeStore and NLP modules

task module task module

Tokenizing IXA tokenizer NE disambiguation Spotlight NED
PoS tagging IXA PoS tagger Dependencies Mate dependency parser
Multiword tagger VUA MW tagger Semantic roles Mate semantic role labeler
NE recoginition IXA NER TimeX TimePro
Opinion mining VUA Opinion miner Event coreference VUA event corefence (lb)
WSD VUA WSD Factuality determiner VUA factuality

Table 3: Overview of tasks and modules included in IXA pipeline

the Knowledge Store, but any transaction can be postponed by stream-in and stream-out
processes between modules directly.

Each annotation in the KnowledgeStore will have a pointer to the NAF annotation it
was generated from (provenance marking). NAF annotations will most likely also be stored
in the Knowledge Store, where we estimate an additional 100 GB is needed for the 1M news
and annotations outlined above. Table 2 indicates the interaction between modules and
individual components of the KnowledgeStore. Modules are grouped according to the stage
in which they take place. The Knowledge Store is described in more detail in Section 5.

3.1.4 Architecture of the baseline system

As mentioned above, the previous sections outlined the full architecture planned for News-
Reader. The basic system we are using for processing at the moment is a pipeline that
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does not exploit the possibilities of parallization yet. NewsReader started processing the
news in November 2013. This subsection describes the architecture of the pipeline that
was used for processing the first 66,000 documents. The basic system is simpler than the
setup described above in two aspects. First, for each task one module is selected. Second,
the system does not explore possibilities of optimizing the process through parallelization.
In most cases where alternative modules were avalaible, the IXA module is used in this
first setup. We therefore use the term IXA pipeline to refer to the basic system.

Figure 8: The IXA pipeline

The tasks that are supported and their modules are listed in Table 3. Figure 8 represents
the IXA pipeline with all modules in order of application. Both Table 3 and Figure 8 only
represent the modules for document processing. The output of the pipeline is used as
input for the VUA aggregation module, which identifies cross document event and entity
coreference. It should be noted that baseline systems are used for some tasks. Notably,
the opinion miner that is currently used does not take factuality into account yet, which
is why it can be applied before the factuality module. Furthermore, the current event
coreference module is a simple baseline system which uses lemmas to establish coreference.
In this case, the position in the pipeline need not change when a more sophisticated module
is used, because all information needed by the more advanced implementation is already
available to the current module in the pipeline.

The IXA pipeline as presented above will serve as a baseline for further experiments.
Currently, more advanced modules are being intregrated including the Graph-based coref-
erence module and a newly developed module for identifying and normalizing temporal
expressions. After testing several alternative pipelines, we will experiment with combin-
ing alternative modules that perform the same task and optimizing processing through
parallelization as described above.
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LAF requirements NIF requirements

Expressive adequacy Compatibility with RDF
Media independence Coverage
Semantic adequacy Structural interoperability

Incrementality Conceptual interoperability
Uniformity Granularity
Openness Provenance and Confidence

Extensibility Simplicity
Human readability Scalability

Processability
Consistency

Table 4: Requirements defined for LAF and NIF.

3.2 NAF

NewsReader makes use of a wide variety of NLP tools that are used in a complex architec-
ture. We aim at improving our results by combining existing tools with tools developed
especially as part of the NewsReader project. All these tools need to be able to communi-
cate to each other. We therefore developed the NLP Annotation Format. The motivation
behind this format, its desiderata and how it fulfills these are presented in this section.

3.2.1 Motivation

As the number of available NLP tools increases and they are used in more and more
complex architectures, awareness of the importance of standardization rises ([Ide et al.,
2003], [Bosma et al., 2009], [Hellmann et al., 2013], among others). One of the main
challenges lies in the fact that linguistic annotations as well as the output of NLP tools
can be based on different theories or insights which each may have their own strengths.

Standardization efforts must therefore bring these variations together without compro-
mising the richness of the individual output of different tools. In this section, we will
explain how this is carried out by combining strengths of a format based on the Linguistic
Annotation Format [Ide et al., 2003, LAF] with those of the NLP Interchange Format
[Hellmann et al., 2013, NIF]. In order to support our goals, NAF carries the role of RDF
even further than currently done in NIF. Table 4 lists the requirements defined for LAF
and NIF. In fact, NAF fulfills all of these requirements. For reasons of space, we will limit
ourselves to indicating properties of NAF related to these requirements in bold font. The
main idea behind NAF is that it combines advantages of LAF-related formats and NIF.
As such, it provides a framework that fulfills requirements imposed by NewsReader and
other projects involving complex NLP architectures and Linked Data. It can therefore be
adopted in various other NLP projects.

NAF is based on Knowledge Annotation Format [Bosma et al., 2009, KAF]. This
format follows the main principles of LAF as outlined in [Ide et al., 2003]. Like LAF, KAF
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aims at maximum flexibility, processing efficiency and reusability. It is a layered,
extensible format where each tool incrementally adds its output while maintaining all
information that was present in its input. KAF has shown to be suitable for a complex
pipeline combining tools developed at different sites in the KYOTO project. For more
recent projects, however, some additional properties are required. First, as explained
above, within the NewsReader project, we aim to extract storylines and store them as
RDF triples in the KnowledgeStore. The information in the KnowledgeStore will also be
used to support linguistic processing (e.g. for disambiguation). Second, we have more than
one tool for several of the steps in the pipeline. Ideally the output of these tools should
be combined. Third, we delay decisions as much as possible. Instead of only providing the
output that received the highest score, we will include several possible outcomes per tool
with their confidence scores.

These three desiderata can be addressed by using RDF conforming representations as
shown by NIF. NIF is a RDF compliant format for linguistic information that is designed
to accommodate the constantly increasing wide variety of NLP tools [Hellmann et al.,
2013] and can include information on provenance and confidence. Both provenance and
confidence score indications are essential when combining the output of different tools. A
drawback of NIF is that it does not seem to be a practical format for internal use of NLP
tools. This assumption is confirmed by [Hellmann et al., 2013]’s own user evaluation of the
format.

NAF combines the strengths of KAF and NIF by using Uniform Resource Iden-
tifiers as much as possible in a representation that in other aspects follows the LAF
recommendations. It is suitable to be used in NLP tools and offers the means to combine
outcome of alternative tools while indicating provenance and confidence scores, as also
offered by NIF. We even take the idea of using RDF conform representations a step further
than NIF and also encourage to use URIs to refer to linguistic properties and values. The
next section will elaborate on the main advantages of this extensive use of RDF compliant
representations.

3.2.2 RDF in linguistic representations

RDF is a useful data model for NAF due to several reasons. This section will list the main
reasons and explain how they support the desiderata outlined in the previous section.

First, RDF is by nature a graph model, which makes declarative specification of de-
pendency patterns easy, for instance in SPARQL. Triple stores are typically optimized for
queries that require multiple joins. That makes evaluation of dependency graph queries,
which are typically long branched chains, efficient. This facilitates the communication
between the KS and linguistic processing tools.

Second, RDF uses URIs for identification and URIs are not limited to the scope of a
document, but have a global validity. This makes it easy to represent coreference relations
across documents as done in the Grounded Annotation Framework [Fokkens et al., 2013,
GAF]. In GAF, formal representations of instances can be linked to one or more mentions
of this instance in text, hence indicating which mentions corefer to this instance. A similar
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approach is taken to model the relations between instances: e.g., we can indicate that a
semantic role label between the mention of a participant and the mention of an event is
the mention of the relation between the event and this participant.

Third, RDF forms the basis on which RDFS and OWL ontology reasoning is possible.
This allows for some very useful operations, such as subclass, subproperty and property
chain reasoning. This last property forms the main motivation to use URIs more extensively
than is done in NIF. If we can represent linguistic properties as ontologies, we can define
how output of different tools relate to each other. If, for instance, there are differences in
granularity between output of different tools, it can be used to generalize over linguistic
information (e.g., NNS ⊆ NN ⊆ NP). It is also possible to define equivalence or near
equivalence. If, for instance, users want to use URIs that refer to ISOcat definitions that
are still under construction, they can define their own tool-specific ontology of properties
and values that can be linked to the ISOcat standards later on.

It should be noted that NAF strongly encourages the use of URIs, but does not enforce
it. New layers of information can thus be integrated in NAF representations easily by using
strings to represent properties and values. Ontologies that support the full reasoning and
comparison advantages of RDF can be defined at a larger stage, when the need to compare
or combine the information rises.

3.2.3 NAF: NLP Annotation Format

NAF is a layered annotation format, based on XML. If a process adds information which
cannot be held by existing layers, it just adds a layer of annotation. Any previous layers
remain intact and can still be used by other processes. Layers may be connected by means
of references from one layer to items in another (lower level) layer.

A full description of the NAF format is given in the NAF manual. The remainder of
this section relates NAF to ISO standards, and gives an overview of the NAF layers of
annotation.

Annotation layers

In the NewsReader project, we use NAF to automatically annotate text documents. In
this section, we show annotated examples from different NAF layers for a single sentence:

Followers of Muqtada al-Sadr clashed with British troops in the city of Amarah
in battles late Monday that killed 15 Iraqis and wounded eight, said a coalition
spokesman in the city, Wun Hornbyckle.

NAF provides the following layers to represent the output of common NLP tasks:

The header contains metadata information about the input document, such as its public
ID, the URI, creation time, etc. The header also records information about all the
LP modules which were used to produce the NAF document.
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<nafHeader>

<fileDesc creationtime="2004-04-06"/>

<public publicId="3938040573f3b401a3f9c66974fb4c4b"

uri="http://usatoday.com/news/2004-04-06-iraqi-shiites_x.htm"/>

<linguisticProcessors layer="text">

<lp name="ixa-pipe-tok-en"

timestamp="2013-06-26 14:15:18"

version="1.0"/>

</linguisticProcessors>

<linguisticProcessors layer="terms">

<lp name="ixa-pipe-pos-en"

timestamp="2013-06-26 14:15:18"

version="1.0"/>

</linguisticProcessors>

...

</nafHeader>

Figure 9: Example: a fragment of the NAF header. The NAF header includes metadata
about the source document, such as its creation time or URI. The header also includes
information about all the LP modules which underwent the input text to produce the final
NAF document.

The raw layer contains the input document verbatim. Because the input text may con-
tain many characters which are invalid in XML, the raw layer is enclosed within a
CDATA element.

The text layer contains the tokens of the document. Optionally, sentence, paragraph
and page boundaries are indicated. This layer – the text element in NAF – is the
result of sentence splitting and tokenization. Figure 10 shows how the example
sentence is annotated in the text layer.

The terms layer contains words and multi-words. It also includes meta-information such
as part-of-speech, references to other resources such as wordnet senses, whether or
not it is a named entity, compound elements (in case of a compound), etc. Since
(multi-)words consist of tokens, they refer to tokens in the text layer. Figure 11
shows two examples of (multi-)words in the terms layer.

The chunks layer contains chunks of words, such as noun phrases, prepositional phrases,
etc. Since chunks consist of words, they refer to words in the terms layer. Each chunk
has a head, which is also an item in the terms layer. Figure 12 shows two examples
of chunks in the chunks layer.

The dependency layer contains dependency relations between words. Since words par-
ticipate in dependency relations, they refer to words in the terms layer. Figure 12
shows examples of dependency relations between words in the example sentence.
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<raw><![CDATA[Followers of Muqtada al-Sadr clashed .... Wun Hornbyckle.]]>

</raw>

<text>

<wf id="w1" sent="1" offset="0" length="9">Followers</wf>

<wf id="w2" sent="1" offset="10" length="2">of</wf>

<wf id="w3" sent="1" offset="13" length="7">Muqtada</wf>

<wf id="w4" sent="1" offset="21" length="7">al-Sadr</wf>

<wf id="w5" sent="1" offset="29" length="7">clashed</wf>

...

</wf>

</text>

Figure 10: Example: a fragment of the raw and text layers. The raw layer includes the
input text verbatim. In the text layer, each token (enclosed in a wf element) has an
identifier, an offset, a page number, a sentence number and a paragraph number.

The entity layer contains entity mentions. Entities mentions have an entity type (per-
son, organization, etc) and are linked to and instance from an external resources such
as Wikipedia or dbpedia. Figure 13 shows examples of entities found in the example
sentence.

The coreference layer contains clusters of term spans which refer to the same entity.
Figure 13 shows the coreference clusters of the example sentence.

The semantic role layer . Semantic Role Labeling (SRL) is a shallow semantic analysis
which detects semantic arguments associated with predicates. Figure 14 shows the
SRL layer for the example sentence.

The time expression layer identifies time expressions mentioned on the text. The time
expressions are annotated using a format which mimics the TimeML standard [Puste-
jovsky et al., 2010]. Figure 15 shows the temporal expressions extracted from the
example sentence.

The factuality layer encodes the veracity or factuality of events as mentioned in the
text. This information is useful for recognizing whether the events mentioned in the
text actually happened (factual events), did not happen (contrafactual events), or
there is some uncertainty about the event occurring or not. Figure 15 shows the
factuality values for the example sentence.

The above layers form a chain of dependencies. The base layer of every NAF file is
the text layer. All other layers are optional and are founded on the text layer, which
makes it compliant with LAF. NAF files with few layers are useful for further processing,
or for applications which need only superficial annotation. Although the chunks layer and
the dependency layer can be added independently of each other, they are connected by a
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shared dependency on the terms layer, which ensures that they are both composed of the
same elements.
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<terms>

<term id="t1" type="open" lemma="follower" pos="N" morphofeat="NNS">

<span>

<target id="w1"/>

</span>

<externalReferences>

<externalRef resource="wn30g" reference="eng-30-10099375-n"

confidence="0.525004"/>

<externalRef resource="wn30g" reference="eng-30-10100124-n"/>

confidence="0.474996"

</externalReferences>

</term>

<!--of-->

<term id="t2" type="close" lemma="of" pos="P" morphofeat="IN">

<span><target id="w2"/></span>

</term>

<!--Muqtada-->

<term id="t3" type="close" lemma="Muqtada" pos="R" morphofeat="NNP">

<span><target id="w3"/></span>

</term>

<!--al-Sadr-->

<term id="t4" type="close" lemma="al-Sadr" pos="R" morphofeat="NNP">

<span><target id="w4"/></span>

</term>

<!--clashed-->

<term id="t5" type="open" lemma="clash" pos="V" morphofeat="VBD">

<span>

<target id="w5"/>

</span>

<externalReferences>

<externalRef resource="wn30g" reference="eng-30-02667698-v"

confidence="0.338607"/>

<externalRef resource="wn30g" reference="eng-30-01561143-v"

confidence="0.331206"/>

<externalRef resource="wn30g" reference="eng-30-00805228-v"

confidence="0.330187"/>

</externalReferences>

</term>

...

</terms>

Figure 11: Example: a terms layer fragment. The span element contains references to the
tokens in the text layer which comprise the (multi-)word. The (optional) externalReferences
element contains references to wordnet senses and their corresponding confidence values.
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<!-- Chunk layer -->

<chunks>

<!-- Followers of Muqtada al-Sadr -->

<chunk id="c1" head="t4" phrase="NP">

<span>

<target id="t1"/>

<target id="t2"/>

<target id="t3"/>

<target id="t4"/>

</span>

</chunk>

<...>

</chunks>

<!-- Dependency layer -->

<deps>

<!--nsubj(clashed-5, Followers-1)-->

<dep from="t5" to="t1" rfunc="nsubj"/>

<!--prep_with(clashed-5, troops-8)-->

<dep from="t1" to="t5" rfunc="root"/>

<!--amod(troops-8, British-7)-->

<dep from="t8" to="t7" rfunc="amod"/>

<...>

</deps>

Figure 12: Example: chunks and dependency layer fragment. The span element in the
chunk layer contains references to items in the terms layer which comprise the chunk.
Regarding the dependency layers, the first dep element indicates that Followers (the from

attribute) is the subject (the rfunc attribute) of the clash verb (the to attribute). Both
the from and the to attribute refer to the terms layer.
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<!-- Entity layer -->

<entities>

<entity id="e1" type="misc">

<references>

<!--British-->

<span><target id="t7"/></span>

</references>

<externalRef resource="wikipedia"

reference="http://en.wikipedia.org/wiki/United_Kingdom"

confidence="0.541706"/>

</entity>

<entity id="e2" type="location">

<references>

<!--Amarah-->

<span><target id="t13"/></span>

</references>

<externalRef resource="wikipedia"

reference="http://en.wikipedia.org/wiki/Amarah"

confidence="0.541706"/>

</entity>

...

</entities>

<!-- Coreference layer -->

<coreferences>

<coref id="co1">

<!-- the city -->

<span><target id="t31"/><target id="t32"/></span>

<!-- Amarah -->

<span><target id="t34"/><target id="t13"/></span>

</coref>

</coreferences>

Figure 13: Example: entity and coreference layers. Named entity mentions are identified
and related to external resources such as Wikipedia.
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<!-- Entity layer -->

<srl>

<predicate id="pr1">

<!--clashed-->

<externalReferences>

<externalRef reference="clash.01" resource="PropBank"/>

<externalRef reference="Hostile_encounter" resource="FrameNet"/>

<externalRef reference="battle-36.4" resource="VerbNet"/>

<externalRef reference="battle-36.4-1" resource="VerbNet"/>

</externalReferences>

<span><target id="t5"/></span>

<role id="rl1" semRole="A0">

<!--Followers of Muqtada al-Sadr-->

<externalReferences>

<externalRef reference="battle-36.4#Agent" resource="VerbNet"/>

</externalReferences>

<span><target head="yes" id="t1"/><target id="t2"/><target id="t3"/>

<target id="t4"/></span>

</role>

<role id="rl2" semRole="A1">

<!--with British troops-->

<externalReferences>

<externalRef reference="battle-36.4#Co-Agent" resource="VerbNet"/>

</externalReferences>

<span><target head="yes" id="t6"/><target id="t7"/><target id="t8"/>

</span>

</role>

<role id="rl3" semRole="AM-LOC">

<!--in the city of Amarah-->

<span><target head="yes" id="t9"/><target id="t.mw10"/><target id="t12"/>

<target id="t13"/></span>

</role>

</predicate>

...

</srl>

Figure 14: Example of semantic rol labeling layer. The example shows the information
to one predicate, clash. The predicate is linked to external event models, like clash.01 in
PropBank or the Hostile encounter frame of FrameNet. The example also shows how the
roles of the predicate are filled in the text.
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<!-- time layer -->

<timexs>

<!-- 1970 -->

<timex3 id="timex1" type="DATE"

value="1970">

<span><target id="c7"/></span>

</timex3>

<!-- 2003 -->

<timex3 id="timex2" type="DATE"

value="2003">

<span><target id="c9"/></span>

</timex3>

<!-- between 1970 and 2003 -->

<timex3 id="timex3" type="DURATION">

value="P33Y" beginPoint="timex1"

endPoint="timex2"

temporalFunction="true"/>

</timexs>

<!-- factuality layer -->

<factualitylayer>

<factvalue id="w19" prediction="CT+" confidence="0.9211625450434778"/>

<factvalue id="w5" prediction="CT+" confidence="0.9404844085799826"/>

<factvalue id="w26" prediction="CT+" confidence="0.8379289630516332"/>

<factvalue id="w23" prediction="CT+" confidence="0.9717756091958029"/>

</factualitylayer>

Figure 15: Example to time and factuality layers.
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3.3 SEM

SEM was designed to represent events in the broad sense of the word, derived from var-
ious sources (from the web, sensory data, historical documents, etc.). These data can be
incomplete (e.g. missing values) and partial (e.g. missing entire facets), and they follow
different design decisions. SEM has to be very flexible to cope with these issues. As SEM
is meant to represent data from uncontrollable sources, the notions of temporary validity
(during what temporal interval an event or a statement holds) and authority (according
to whom an event or statement holds) become important. It is also important to allow
all classes and properties in the model to be optional and duplicable, and to be flexible
towards different ways of modeling time, place, type, and point of view,. In the rest of this
section we first describe how these requirements are implemented in SEM and motivate
the modeling decisions taken for the implementation. Then we discuss the classes and
properties that make up SEM and how to model views and temporary validity with the
concept of contexts.

3.3.1 Modeling Decisions

The primary consideration for designing SEM is that it should on the one hand be forgiving
for the inherent messiness of the (Semantic) Web, while on the other hand still allowing a
user to derive useful facts. On the Web, vocabulary owners can choose different options to
classify the same domain, because different situations merit different distinctions. It can
be hard to decide in advance which way will prove to be the most useful, especially because
the Web allows reuse across domains, in applications that were not predicted beforehand.
The more constraining a model is, the harder it is to reuse. To profit the most from what
the (Semantic) Web has to offer it pays off to model with relatively weak semantics. To
compensate for the lack of formal inference you can make with a weak model, you have to
rely more on graph patterns (e.g. with SPARQL) to do reasoning.

The greatest implication of our decision to tailor an event model for data on the web
is that we can not commit to a specific definition of an event. Events, according to SEM,
encompass everything that happens, even fictional events. Whether there is a specific
place or time or whether these are known is optional. It does not matter whether there
are specific actors involved. Neither does it matter whether there is consensus about the
characteristics of the event. For example, King Arthur’s quest, the landing of UFO in
Roswell or the elections of G.W. Bush, are valid events in SEM.

An important corollary of this loose definition of event and multitude of possible sources
is that handling different viewpoints is crucial. In particular three aspects of viewpoints: (1)
Roles, (2) time bounded validity of facts (e.g. time dependent type or role), (3) attribution
of the authoritative source of a statement.

In order to query events at a relevant level of abstraction for any given application we
need a good typing system. We would like to be able to reuse any vocabulary on the Web
to pick our types from, regardless of how the concepts in these vocabularies are modeled.

The concrete implications of the web context for the RDF model of SEM are the
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following.

• We allow types to be both individuals or classes. This way we can borrow type
identifiers from any vocabulary. It should not matter whether the type has been
modeled as an individual or a class by the foreign vocabulary. (cf. OWL 2 punning)

• We use as few disjointness statements as possible, even where they would seem ob-
vious. For example, SEM does not enforce places to be disjoint with actors. This
allows reuse of vocabularies that do not make the distinction between a geographical
region and its governing body.

• We only use rdfs:domain and rdfs:range to non-restricting classes (i.e. that can not be
proved to be disjoint to any other SEM classes and hence do not restrict the domain
or range of the property). This way we do not inherit any constraints from these
classes through property semantics.

• We map to other event models with the SKOS vocabulary,13 instead of using OWL
constructs, to avoid overcommitment. In principle these mappings can be treated as
documentation of the meaning of the SEM constructs and not as parts of their formal
definition. SKOS mapping properties do not transfer OWL consequences. If stronger
mappings are necessary it is possible to decide to momentarily replace the appropriate
mappings relations with stronger versions, like owl:sameAs or rdfs:subClassOf.

• Every class and property is optional and can be duplicated, i.e. we do not model
cardinality restrictions. Specifically we do not enforce the use of sem:types (not
rdf:types, which are necessary).

• We do not declare properties functional, even if that seems appropriate. This avoids
conflicts when aggregating data from different sources. For example, you might
gather various birth dates for a single person. Even though the person was only born
once–and thus inconsistency is appropriate–we do not want this to break our system.
When reasoning over the web, debugging someone else’s data is not always possible.

• We pay a special attention to graph patterns for efficient reasoning, to compensate
for the limited formal constraints of SEM.

These implications are in line with the view of the Web outlined in chapter 1 of Allemang
and Hendler [Allemang and Hendler, 2009].

3.3.2 SEM Specification

In this section we describe how these modeling decisions are implemented in SEM. First we
discuss the core classes and the properties that make up SEM; then how to model points of
view, possibly with temporary validity as named graphs that contain a number of (partial)

13http://www.w3.org/2004/02/skos/
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event descriptions; and finally how to model time and space with OWL Time. We give
a simple and more elaborate example of how an event from the historical domain can be
modeled in SEM in Figure 19. These examples represent information from the following
sentence,14 which represents a typical sentence from the historical domain:

The Dutch launched the first police action in the Dutch East Indies in 1947;
the Dutch presented themselves as liberators but were seen as occupiers by the
Indonesian people.

This example is interesting for a number of reasons: (1) it contains conflicting views
on the role of the actor: were the Dutch liberators or occupiers? (2) it makes explicit
according to which authority the roles hold (the Dutch / Indonesian people); (3) it presents
a challenge for modeling the type of the place involved: the Dutch East Indies were at
that time an independent Republic according to the Indonesians, but were a “controlled
region” according to the Dutch. The next subsections describe the classes, properties and
constraints of SEM.

Classes SEM’s classes are divided in three groups: Core classes, Types, and Constraints.
This is illustrated in Figure 16. There are four core classes: sem:Event (what happens),
sem:Actor (who or what participated), sem:Place (where), sem:Time (when). Each core class
has an associated sem:Type class, which contains resources that indicate the type of a core
individual. Individuals and their types are usually borrowed from other vocabularies. For
example, the sem:Place “Indonesia” (tgn:1000116) from Figure 19 and its sem:PlaceType
“republic” (tgn:82171) are borrowed from the Getty Institute’s Thesaurus of Geographical
Names (TGN).15

The sem:Type classes exist to aggregate the various implementations of type systems in
any vocabulary. Some vocabularies do not have properties that exactly correspond to the
sem:type property, even though a type can be derived from the value of other properties.
This can be done by using Alan Rector’s Value Sets and Value Partition patterns.16 These
design patterns are illustrated in figure 17. Having explicit sem:Type classes provides a
placeholder to define these patterns. If you want to make the class of all harbors using
GeoNames’ geo:featureCode property you could do this in the following two ways. You
could define geo:featureCode to be a subproperty of sem:placeType. This makes geo:H.HBR
a class, containing all geo:Features that are a harbor. If you do not want to turn the
individual geo:H.HBR into a class you can follow the value sets pattern and define the
set of harbors to be a subclass of sem:Place and an owl:Restriction on the geo:featureCode
property with owl:hasValue geo:H.HBR. This approach keeps geo:H.HBR an individual.

14The original text is in Dutch. This sentence is extracted from the Netherlands Institute for Sound and
Vision’s catalogue description of the TV episode of Andere Tijden broadcasted on the 2004-10-26. The
serie Andere Tijden consists of documentaries on historical topics.

15http://www.getty.edu/research/conducting_research/vocabularies/tgn/
16http://www.w3.org/TR/swbp-specified-values/
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Figure 16: The classes of the Simple Event Model. Arrows with open arrow heads symbolize
rdfs:subClassOf properties between the classes. Regular arrows visualize rdfs:domain and
rdfs:range restrictions on properties between instances of the classes.

Context The version of SEM used in the NewsReader, SEM+, contains only one method
to constrain the context of a statement: ckr:Context. This can be used to specify either the
point of view of a collection of triples or the temporal validity. Roles, as defined in previous
versions of SEM can be declared using subproperties of sem:eventProperty or sem:type.
For example, Actors that have the role “occupier” in a certain event can be declared by
introducing a subproperty of sem:hasActor, nwr:occupier, that relates the event to the actor.
The temporal validity of this fact can be defined by putting the triple in a ckr:Module in
a ckr:Context that limits the validity using sem:hasTimeValidity. The attribution of points
of view, or the source of certain information can be done by attaching a sem:PointOfView
to a ckr:Context, which can be assigned a sem:Authority representing the source of the
information, or opinion. For example, Indonesia, in 1947, has either the type “republic”
or “controlled region”, depending on the source of information. This would be encoded
with two distinct sem:placeType triples in two distinct ckr:Context named graphs. The
fact that these two contexts are stated by two different parties is encoded by introducing
two sem:Authority instances, respectively dbpedia:Indonesia and dbpedia:Netherlands that
are connected to the context nodes with the sem:hasAuthority property. The sem:Authority
class is meant as a hook for provenance and trust reasoning, even though SEM itself does
not explicitly provide this.

Properties SEM’s properties are divided in three kinds: sem:eventProperty, sem:type
properties and a few miscellaneous properties like sem:hasAuthority and the temporal prop-
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Figure 17: Alan Rector’s value sets (top) and value partition (bottom) patterns applied to
SEM (left) compared to the original examples from the W3C working group note (right).

Figure 18: The representations of the Role property constraint in SEM and of points of
view modeled with Contexts.

erties sem:hasTime and sem:hasTimeValidity. The sem:eventProperty relates sem:Events to
other individuals. The sem:eventProperty sem:causes can be used to describe causal chains
of sem:Events. A sem:type relates individuals of the sem:Core class17 to individuals of
sem:Type. There are specific subproperties of sem:type for each of the core classes, for
example sem:eventType, to facilitate querying. This reduces the strain on reasoners, be-
cause the property points directly to an individual of sem:EventType without doing any
subsumption reasoning. sem:hasAuthority relates a sem:PointOfView to a sem:Authority and
is used to represent opinions, which are linked to the named graph that contains the actual
facts that comprise the opinion by means of the sem:hasPointOfView property. The classes
ckr:Module and ckr:Context come from the Contextualized Knowledge Repository (CKR)
framework [Bozzato and Serafini, 2013]

There are two aggregation relations amongst the sem:eventProperty and sem:type prop-
erties: sem:subEventOf and sem:subTypeOf. These can be used to indicate that respectively

17They also relate sem:Role to its sem:RoleType.
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a sem:Event or sem:Type is related to another more generic sem:Event or sem:Type, with-
out any further commitments. We decided not to model subtypes as subproperties of
skos:broader/narrower, because we do not want to inherit the disjointness of skos:broader
with skos:related. More specific relations between events and types are not part of SEM
and should be taken from other ontologies, like GEM [Worboys and Hornsby, 2004].

There are two temporal properties: sem:hasTime, and sem:hasTimeValidity. Both refer
to an OWL Time owltime:TemporalEntity, such as owltime:Interval or owltime:Instance, which
are subclasses of sem:Time. The owltime:TemporalEntity is a abstract identifier for a certain
moment or interval in time. A concrete timestamp can be (and should be) attached to the
temporal entity by means of owltime:inXSDDateTime or owltime:inXSDDate, which refers
to literal of the XML Schema datatype xsd:dateTime and xsd:date, which in turn follow
the ISO 8601 date and time specification. An alternative way to label time instances is
to use the sem:hasTimeStamp property to point to a rdf:XMLLiteral containing a TIMEX
time element,18 which supports both ISO 8601 time and relative time indications, such as
“early yesterday morning”.

A similar distinction between symbols and values exists when expressing places. There
are symbolic places and coordinates. In SEM the individuals of the sem:Place class are sym-
bolic places. Their location can be attached by using various constructs, like georss:point,19

or wgs84:lat and wgs84:long.20 Complex geometries like polygons can be encoded in GML21

in an rdf:XMLLiteral pointed at by georss:where.

Example The historical example mentioned in the introduction of this section can be
expressed in SEM+ as shown in Figure 19. The instance of the event ex:FirstPoliceAction
in the example has one sem:Actor, which plays different roles according to two authorities.
This is modeled with two separate triples that are both rdfs:subPropertyOf sem:hasActor.
Each triple resides in a named graph that represents a Contextual Knowledge Repository
ckr:Module. These modules are collected together into ckr:Contexts. In the case of this
example, there two contexts, the context of the opinion of dbpedia:Netherlands and that
of dbpedia:Indonesia. Another difference in opinion is which sem:placeType to assign to
tgn:1000116 (Indonesia). The same construct can be used to limit the temporal validity
of statements, which is outside the scope of this example. In that case, one could attach
a sem:hasTimeValidity property to the node representing the ckr:Context pointing at a owl-
time:TemporalEntity denoting the period at which the statements in the modules of the
context are considered valid.

18http://timex2.mitre.org/
19http://www.w3.org/2005/Incubator/geo/XGR-geo-20071023/
20http://www.w3.org/2003/01/geo/
21http://www.opengeospatial.org/standards/gml
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Figure 19: A representation of the historical example event in SEM+.
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3.4 GAF

The previous sections described NAF and SEM+. NAF is used to represent linguistic
information and SEM+ is the basic model we use to represent the interpretation of this
information: what happened (events), where (locations) and when (time interpretations)
and who was involved (participants). This sections describes the Grounded Annotation
Framework [Fokkens et al., 2013, GAF]. GAF allows us to relate the information in SEM+
to the linguistic analysis represented in NAF. The final output of our NLP analyses, which
also forms the input for the KnowledgeStore, is expressed in GAF. This section provides a
desciption of the framework.

3.4.1 Motivation

GAF is a new model for representing information that was designed specifically for the
purpose of event representation. The framework was primarily designed to address two
issues with current approaches with other event representations used in the NLP commu-
nity. First, we want to be able to link information from text to information coming from
non-textual sources such as databases. Second, we wanted to avoid using a ’trigger’ or
’anchor’ event mention for identifying a group of coreferring events. We will explain both
of these aspects in detail below.

Events are not only described in textual documents, they are also represented in many
other non-textual sources. These sources include videos, pictures, sensors or evidence
from data registration such as mobile phone data, financial transactions and hospital reg-
istrations. Nevertheless, many approaches to textual event annotation consider events as
text-internal-affairs, possibly across multiple documents but seldom across different modal-
ities. It follows from the above that event representation is not exclusively a concern for
the NLP community. It also plays a major role in several other branches of information
science such as knowledge representation and the Semantic Web, which have created their
own models for representing events.

GAF allows us to interconnect different ways of describing and registering events, in-
cluding non-linguistic sources. GAF representations can be used to reason over the cumu-
lated and linked sources of knowledge and information to interpret the often incomplete
and fragmented information that is provided by each source. We make a clear distinc-
tion between mentions of events in text or any other form of registration and their formal
representation as instances in a semantic layer.

Mentions in text are identified by our NLP pipeline and represented in NAF. The
final semantic output is realized using Semantic Web technologies and standards. In this
semantic layer, instances are denoted with Uniform Resource Identifiers (URIs). Attributes
and relations are expressed according to the extended Simple Event Model [van Hage et al.,
2011, SEM+] that was described in the previous section and other established ontologies.
Statements are grouped in named graphs based on provenance and (temporal) validity,
enabling the representation of conflicting information. External knowledge can be related
to instances from a wide variety of sources such as those found in the Linked Open Data
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Cloud [Bizer et al., 2009].
Optionally, instances in the semantic layer can be linked to one or more mentions in text

and other sources. Because not all instances have to be linked to text, our representation
offers a straightforward way to include information that can be inferred from text, such as
implied participants or whether an event is part of a series that is not explicitly mentioned
in any text. Due to the fact that each URI is unique, it is clear that mentions connected to
the same URI have a coreferential relation. Other relations between instances (participants,
causality, subevents, temporal relations, etc.) are represented explicitly in the semantic
layer.

3.4.2 Background and related work

Annotation of events and of relations between them has a long tradition in NLP. The
MUC conferences [Grishman and Sundheim, 1996] in the 90s did not explicitly annotate
events and coreference relations, but the templates used for evaluating the information
extraction tasks indirectly can be seen as annotation of events represented in newswires.
Such events are not ordered in time or further related to each other. In response, [Setzer and
Gaizauskas, 2000] describe an annotation framework to create coherent temporal orderings
of events represented in documents using closure rules. They suggest that reasoning with
text independent models, such as a calendar, helps annotating textual representations.

More recently, generic linguistically based corpora, such as Propbank [Palmer et al.,
2005] and the Framenet corpus [Baker et al., 2003] have been built. The annotations
aim at properly representing verb structures within a sentence context, focusing on verb
arguments, semantic roles and other elements. In ACE 2004 [Linguistic Data Consor-
tium, 2004b], event detection and linking is included as a pilot task for the first time,
inspired by annotation schemes developed for named entities. They distinguish between
event mentions and the trigger event, which is the mention that most clearly expresses its
occurrence [Linguistic Data Consortium, 2004a]. Typically, agreement on the trigger event
is low across annotators (around 55% [Moens et al., 2011]). Timebank [Pustejovsky et al.,
2006] is a more recent corpus for representing events and time-expressions that includes
temporal relations in addition to plain coreference relations.

All these approaches have in common that they consider the textual representation as
a closed world within which events need to be represented. This means that mentions are
linked to a trigger event or to each other but not to an independent semantic represen-
tation. More recently, researchers started to annotate events across multiple documents,
such as the EventCorefBank [Bejan and Harabagiu, 2010]. Cross-document coreference is
more challenging for establishing the trigger event, but it is in essence not different from
annotating textual event coreference within a single document. Descriptions of events
across documents may complement each other providing a more complete picture, but still
textual descriptions tend to be incomplete and sparse with respect to time, place and par-
ticipants. At the same time, the comparison of events becomes more complex. We thus
expect even lower agreement in assigning trigger events across documents. [Nothman et
al., 2012] define the trigger as the first new article that mentions an event, which is easier
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than to find the clearest description and still report inter-annotator agreement of .48 and
.73, respectively.

Recent approaches to automatically resolve event coreference (cf. [Chambers and Juraf-
sky, 2011], [Bejan and Harabagiu, 2010]) use some background data to establish coreference
and other relations between events in text. Background information, including resources,
and models learned from textual data do not represent mentions of events directly but are
useful to fill gaps of knowledge in the textual descriptions. They do not alter the model
for annotation as such.

We aim to take these recent efforts one step further and propose a grounded annotation
framework (GAF). Our main goal is to integrate information from text analysis in a formal
context shared with researchers across domains. Furthermore, GAF is flexible enough
to contain contradictory information. This is both important to represent sources that
contradict each other and to combine alternative annotations or output of different NLP
tools. Because conflicting information may be present, provenance of information is
provided in our framework, so that we may decide which source to trust more or use it as
a feature to decide which interpretation to follow. Different models of event representation
exist that can contribute valuable information. Therefore our model is compliant with prior
approaches regardless of whether they are manual or automatic. Finally, GAF makes a clear
distinction between instances and instance mentions avoiding the problem of determining
a trigger event. Additionally, it facilitates the integration of information from extra-textual
sources and information that can be inferred from texts, but is not explicitly mentioned.
The next section will explain how we can achieve this with GAF.

3.4.3 An introduction to GAF

This section explains the basic idea behind GAF by using texts on earthquakes in In-
donesia. GAF provides a general model for event representation (including textual and
extra-textual mentions) as well as exact representation of linguistic annotation or output
of NLP tools. Simply put, GAF is the combination of textual analyses and formal semantic
representations in RDF.

We selected newspaper texts on the January 2009 West Papua earthquakes from the
shared task dataset of the 2013 workshop on Events22 to illustrate GAF. This choice was
made because (1) using a dataset that comes from a shared task allows other researchers
to compare their approaches to GAF (making GAF more accessible to other researchers)
and (2) the topic “earthquake” illustrates the advantage of sharing URIs across domains.

[Gao and Hunter, 2011] propose a Linked Data model to capture major geological events
such as earthquakes, volcano activity and tsunamis. They combine information from dif-
ferent seismological databases with the intention to provide more complete information to
experts which may help to predict the occurrence of such events. The information can also
be used in text interpretation. We can verify whether interpretations by NLP tools cor-
respond to the data and relations defined by geologists or, through generalization, which

22https://sites.google.com/site/cfpwsevents/
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Figure 20: Partial SEM representation of December 26th 2004 Earthquake

interpretation is the most sensible given what we know about the events. General informa-
tion on events obtained from automatic text processing, such as event templates [Chambers
and Jurafsky, 2011] or typical event durations [Gusev et al., 2010] can be integrated in SEM
in a similar manner. Provenance indications can be used to indicate whether information
is based on a model created by an expert or an automatically derived model obtained by
a particular approach.

Figure 20 provides a fragment of a SEM representation for the earthquake and tsunami
of December 26 2004.23 The model is partially inspired by [Gao and Hunter, 2011]’s pro-
posal. It combines information extracted from texts with information from DBpedia. The
linking between the two can established either manually or automatically through an entity
linking system.24 The combined event of the earthquake and tsunami is represented by a

23A larger representation including several events and the sentences it represents can be found at http:
//semanticweb.cs.vu.nl/GAF/Earthquakes.pdf.

24Entity linking is the task of associating a mention to an instance in a knowledge base. Several
approaches and tools for entity linking w.r.t. DBpedia and other data sets in the Linked Open Data cloud
are available and achieve good performances, such as DBpedia Spotlight [Mendes et al., 2011]; see [Rizzo
and Troncy, 2011] for a comparison of tools.
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DBpedia URI. The small circle on its right (linked through a sem:subEventOf, technically
an RDF blank node) represents the earthquake itself.25

The unambiguous representation of the 2004 earthquake leads us to additional infor-
mation about it, for instance that the earthquake is an event (sem:Event) and that the
sem:EventType is an earthquake, in this case represented by a synset from WordNet, but
also the exact date it occurred and the exact location (cf sem:hasTime, sem:hasPlace).
The geo:parentFeature can provide more information on the event’s location. Here, it
indicates that the location is in the Indian Ocean represented by a unique identifier in
GeoNames. It should be noted that URIs (even if they sometimes contain English words)
are language-independent. Still, it is possible to ground the model to specific linguistic in-
formation by attaching it to URIs; the GeoNames location geonames:1545739 is associated
to its English and Chinese names.

NAF annotations are converted to SEM relations using basic mapping rules.26 For
example, NAF semantic roles are translated to sem:hasActor relations, and the TLINK
relations are translated to sem:hasTime. We use the relation gaf:denotedBy to include
mentions of an instance in the text. The circle in the right upper corner represents an
unambiguous pointer to an expression in the text, which is of type sso:String. The
form of the expression is included through the attribute str:anchorOf. Text and sentence
structure are modeled using definitions from the NLP Interchange Format (NIF) [Hellmann
et al., 2013]27, which we will also use in future versions of NAF. The origin of the annotation
or the text can be represented with named graphs as explained in Section 3.3.28 The output
of the aggregation module mentioned in Section 3.1 outputs GAF and can be converted
directly to RDF in named graph.

The relation sem:accordingTo indicates provenance. It can relate to the source of the
text (dbpedia:Bloomberg is the source of four years ago), as well as to the source that
links the mention to the instance. The connection between the instance mention four years
ago and the time instance of when the earthquake took place in Figure 20 comes from a
specific NAF annotation represented by naf:doc id xyz sr 24.

3.4.4 GAF Earthquake Examples

This section takes a closer look at a few selected sentences from the text that illustrate
different aspects of GAF. Figure 20 showed how a URI can provide a formal context
including important background information on the event. Several texts in the corpus
refer to the tsunami of 26 December 2004, a 9.1 temblor in 2004 caused a tsunami and
The catastrophe four years ago, among others. Compared to time expressions such as 2004

25A blank node was used in this illustration for reasons of space. In NewsReader, we will avoid using
blank nodes as much as possible. Instances that do not have an identifier of their own will receive one that
is generated by our system.

26This describes the basic implementation for translating NAF to SEM. More elaborate approaches may
be used in future work.

27http://nlp2rdf.org/nif-1-0
28The use of named graphs in this way to denote context is compatible with the method used by [Bozzato

et al., 2012].
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and four years ago, time indications extracted from external sources like DBpedia are not
only more precise, but also permit us to correctly establish the fact that these expressions
refer to the same event and thus indicate the same time. The articles were published in
January 2009: a direct normalization of time indications would have placed the catastrophe
in 2005. The flexibility to combine these seemingly conflicting time indications and delay
normalization can be used to correctly interpret that four years ago early January 2009
refers to an event taking place at the end of December 2004.

A fragment relating to one of the earthquakes of January 2009: The quake struck
off the coast [...] 75 kilometers (50 miles) west of [....] Manokwari provides a similar
example. The expressions 75 kilometers and 50 miles are clearly meant to express the
same distance, but not identical. The location is most likely neither exactly 75 km nor
50 miles. SEM can represent an underspecified location that is included in the correct
region. The exact location of the earthquake can be found in external resources. We can
include both distances as expressions of the location and decide whether they denote the
general location or include the normalized locations as alternatives to those from external
resources.

Different sources may report different details. Details may only be known later, or
sources may report from a different perspective. As provenance information can be in-
corporated into the semantic layer, we can represent different perspectives, and choose
which one to use when reasoning over the information. For example, the following phrases
indicate the magnitude of the earthquakes that struck Manokwari on January 4, 2009:

the 7.7 magnitude quake (source: Xinhuanet)

two quakes, measuring 7.6 and 7.4 (source: Bloomberg)

One 7.3-magnitude tremor (source: Jakartapost)

The first two magnitude indicators (7.7, 7.6) are likely to pertain to the same earth-
quake, just as the second two (7.4, 7.3) are. Trust indicators can be found through the
provenance trace of each mention. Trust indicators can include the date on which it was
published, properties of the creation process, the author, or publisher [Ceolin et al., 2010].
Furthermore, because the URIs are shared across domains, we can link the information
from the text to information from seismological databases, which may contain the exact
measurement for the quake.

Similarly, external information obtained through shared links can help us establish
coreference. Consider the sentences in Figure 21. There are several ways to establish that
the same event is meant in all three sentences by using shared URIs and reasoning. All
sentences give us approximate time indications, location of the affected area and casual-
ties. Reasoning over these sentences combined with external knowledge allows us to infer
facts such as that undersea [...] off [...] Aceh will be in the Indian Ocean, or that the
affected countries listed in the first sentence are countries around the Indian Ocean, which
constitutes the Indian Ocean Community. The number of casualties in combination of the
approximate time indication or approximate location suffices to identify the earthquake
and tsunami in Indonesia on December 26, 2004. The DBpedia representation contains
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There have been hundreds of earthquakes in Indonesia since a 9.1 temblor in 2004 caused a

tsunami that swept across the Indian Ocean, devastating coastal communities and leaving more

than 220,000 people dead in Indonesia, Sri Lanka, India, Thailand and other countries.

(Bloomberg, 2009-01-07 01:55 EST)

The catastrophe four years ago devastated Indian Ocean community and killed more than 230,000

people, over 170,000 of them in Aceh at northern tip of Sumatra Island of Indonesia.

(Xinhuanet, 2009-01-05 13:25:46 GMT)

In December 2004, a massive undersea quake off the western Indonesian province of Aceh

triggered a giant tsunami that left at least 230,000 people dead and missing in a dozen

countries facing the Indian Ocean. (Aljazeera, 2009-01-05 08:49 GMT)

Figure 21: Sample sentences mentioning the December 2004 Indonesian earthquake from
sample texts

additional information such as the magnitude, exact location of the quake and a list of
affected countries, which can be used for additional verification. This example illustrates
how a formal context using URIs that are shared across disciplines of information science
can help to determine exact referents with limited or imprecise information.

3.4.5 Summarizing GAF

GAF is an event annotation framework in which textual mentions of events are grounded
in a semantic model that facilitates linking these events to mentions in external (possibly
non-textual) resources and thereby reasoning. We illustrated how GAF combines NAF and
SEM through a use case on earthquakes. We explained that we aim for a representation that
can combine textual and extra-linguistic information, provides a clear distinction between
instances and instance mentions, is flexible enough to include conflicting information and
clearly marks the provenance of information.

GAF ticks all these boxes. All instances are represented by URIs in a semantic layer
following standard RDF representations that are shared across research disciplines. They
are thus represented completely independent of the source and clearly distinguished from
mentions in text or mentions in other sources. The formal semantic model (SEM) provides
the flexibility to include conflicting information as well as indications of the provenance
of this information. This allows us to use inferencing and reasoning over the cumulated
and aggregated information, possibly exploiting the provenance of the type of information
source. This flexibility also makes our representation compatible with all approaches deal-
ing with event representation and detections mentioned in Section 3.4.2 as well as our own
representations in NAF. It can include automatically learned templates as well as specific
relations between events and time expressed in text. Moreover, it may simultaneously
contain output of different NLP tools.

The proposed semantic layer may be simple, its flexibility in importing external knowl-
edge may increase complexity in usage as it can model events in every thinkable domain.
To resolve this issue, it is important to scope the domain by importing the appropriate
vocabularies, but no more. When keeping this in mind, reasoning with SEM is shown to
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be rich but still versatile [Van Hage et al., 2012].
While GAF provides us with the desired granularity and flexibility for the event anno-

tation tasks we envision, a thorough evaluation still needs to be carried out. This includes
an evaluation of the annotations created with GAF compared to other annotation formats,
as well as testing it within a greater application. A comparative study of top-down and
bottom-up annotation will also be carried out. We are currently using the CAT tool to
create manual annotations and convert those to SEM and are planning to adapt CROMER
(CRoss-document Main Event and entity Recognition, described in Deliverable 3.1 [Tonelli
and Sprugnoli, 2013]) so that we can annotate the semantic layer directly for this compar-
ative study.
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4 Linguistic Processing

The goal of the NewsReader linguistic pipeline is to process daily news-streams in four
languages (English, Dutch, Spanish and Italian) and extract the relevant events mentioned
on texts, so that it can gather knowledge on what happened to whom, when and where,
removing duplication, complementing information, registering inconsistencies while keeping
track of original sources.

The NewsReader approach to event mining involves the deepest processing of text
currently available. Furthermore, NewsReader requires such technology to be applied on
realistic volumes of text within hard time constraints. In this section will describe the
main approach taken by the project to fulfil these requirements.

We first describe the virtual machine approach used in the project. Then, we describe
the distributed pipeline for NLP processing implemented in the first year of the project.
Section 4.3 describes the NLP processing actually performed in this first year and re-
ports statistics regarding execution times, memory consumed and overall throughput of
the deployed NLP modules. Finally, we describe the design of the final NLP processing
architecture which is able to continually consume document streams in a short time.

4.1 Virtual machines for inter-operability

Linguistic processors are complex software packages which often require a large set of
dependencies to be met in order to effectively perform their tasks. Deploying LPs often
requires pre-installing a large set of common software modules on the same machine, which
must be accessible to the LP. The capacity of replicate the results is very important within
the project. One LP module applied to a particular input text has to produce the same
output regardless the software framework (machine, operating system, etc.) where it is
installed. Therefore, special care has to be taken on guaranteeing that the same version of
the LP modules, along with the exact same dependencies, are deployed among machines.

The aforementioned reasons have lead us to use virtual machine (VM) technologies
for deploying the LP modules. Virtualization is a widespread practice that increases the
server utilization and addresses the variety of dependencies and installation requirements.
Besides, virtualization is a ’de-facto’ standard on cloud computing solutions, which offer
the possibility of installing many copies of the virtual machines on commodity servers.

In the NewsReader project will create one VM per language and pipeline. Inside the VM
the involved partners will install the required LP modules (along with the dependencies)
so that a full LP processing in one language can be processed on a single VM. Project
deliverable D4.2 “Event Detection, version 1”29 describe the LP modules considered to be
installed for the first year of the project. Appendix A contains the detailed instructions
for deploying NLP modules inside the shared NewsReader VM, as well as for copying and
deploying the VM into several hosts.

29http://www.newsreader-project.eu/files/2012/12/NewsReader-316404-D4.2.pdf
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4.2 A distributed pipeline for NLP processing

Scalable NLP processing requires parallel processing of textual data. The parallelization
can be effectively performed at several levels, from deploying copies of the same LP pro-
cessor among servers to the reimplementation of the core algorithms of each module using
multi-threading, parallel computing. This last type of fine-grained parallelization is clearly
out of the scope of NewsReader project, as it is unreasonable to expect it to reimplement
all the modules needed to perform such a complex task as mining events. We rather aim
to processing huge amount of textual data by defining and implementing an architecture
for NLP processing which allows the parallel processing of documents.

To this end, we project will use VM as building blocks of the linguistic pipeline. As
described in section 4.1, we will define one VM per language and install all LP modules in
there. This approach allows the project to scale horizontally (or scale out) as a solution
to the problem of dealing with massive quantities of data. In the first year of the project
we will scale out our solution for NLP processing by deploying all NLP modules into VMs
and making as many copies of the VMs as necessary to process an initial document batch
of documents on time.

Inside each VM the modules are managed using the Storm framework for streaming
computing. As explained in section 2.1, Storm processing is based on topologies : a graph
of computation which processes messages forever. Storm topologies are thus top level
abstractions which describe the processing that each message undergoes. Topology nodes
fall into two categories: the so called spout and bolt nodes. Spout nodes are the entry
points of topology and the source of the initial messages to be processed. Bolt nodes are
the actual processing units, which receive messages, process them, and pass the processed
messages to the next stage in the topology. The data model of Storm is the tuple, i.e., each
node in the topology consumes30 and produces tuples. The tuple is an abstraction of the
data model, and is general enough to allow any data to be passed around the topology.

Although the Storm pipeline is focused on a streaming computing scenario, in the first
year of the project we will follow a batch approach to analyze the documents. This batch
approach have two main purposes:

• It will allow the project to have an initial set of events, spanning through a specified
time span, into which new informations and event will be integrated.

• The initial processing will serve as a testbed of the NewsReader technology.

Once the VMs are installed and copied among machines, a set of documents will be man-
ually split into several batches and sent to different VMs. The output of the processing
stage will be then batch uploaded to the KnowledgeStore.

Table 5 shows the modules installed into the English pipeline VM. Each LP module is
wrapped as a bolt node inside the Storm topology. When a new tuple arrives, the bolt node
calls an external command sending the tuple content to the STDIN standard stream. The
output of the LP module is received from the STDOUT stream and passed to the next node

30Unlike spout nodes, which are the initial nodes and therefore do not consume tuples.

NewsReader: ICT-316404 January 10, 2014



System Design, draft 65/115

Module Description Required Input Output layer(s)

TOK Tokenizer, Sentence
splitter

Raw text Tokens, Sentences

POS POS tagger Tokens Lemmas, POS tags

Parse Constituency parser Raw text Parse trees

timex Time expressions Lemma, POS tags Time expressions

NERC Named Entity Recogni-
tion

Lemmas, POS tags Named Entities (NE)

WSD Word Sense Disam-
biguation

Lemmas, POS tags Synsets

NED Named Entity Disam-
biguation

NE Disambiguated NE
(DNE)

Coref Coreference resolution Parse trees, Synsets,
DNE

Coreference relations

Dep Dependency parser Lemmas, POS tags Dependency relations

SRL Semantic Role Labeling Dependency relations Semantic Roles

Fact Factuality Event relations, Time
expressions, Depen-
dency relations

Factuality indications

eCoref Event coreference Event relations, Fac-
tuality indications,
Coreference relations,
Synsets, Semantic Roles

Event coreferences

Table 5: LP modules installed on the English pipeline VMs. The required input and
produced output is also shown.

in the topology. The inter-operability among modules is guaranteed by using a common
format for NLP annotations, i.e., the NAF (see section 3.2). Each module thus receives a
NAF document with the (partially annotated) document and adds new annotations onto
it. The tuples in our Storm topology comprise two elements, a document identifier and the
document itself, encoded as a string with the XML serialization of the NAF document.

If one module fails for whathever reasons to produce a valid NAF document, the input
document is moved to a specific directory and a log entry is created. The processing of this
particular document is stopped at this point, and the system starts processing the next
document in the input directory.

Inside the VM there is an initial spout which scans for a particular directory. When
a new document arrives, the spout passes the document to the first node in the pipeline,
which in turn will pass its output to the next stage, etc. This setting is similar to a standard
pipeline architecture but has a main advantage: when a module finishes the processing, it
passes the annotated document to the next step, and start processing the next document.
Therefore, in this setting there are as many documents processed in parallel as stages in
the pipeline.

Note that in this approach Storm is used within a single VM and that this setting is
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Figure 22: Linguistic processing, first year.

not ideal nor the architecture type Storm framework is meant to be used for. However,
using Storm as the controlling backbone of the LP modules installed within each VM has
the following advantages:

• Inside each VM, the Storm topology is able to run many LP modules in parallel.

• Having implemented this batch approach using Storm, it is straightforward to adopt
a fully streaming architecture as described in section 4.4, where LP modules reside
on several distributed VMs.

• The initial experiments performed using the batch approach will give important
insights as to the need of using specialized VMs containing very time consuming
LP processors.

4.3 Running the pipeline

We have linguistically analyzed 64.540 documents using the setting described in the pre-
vious section. The document were selected by first performing a query on the LexisNexis
News database by selecting specific keywords related to car companies (“Alfa Romeo”,
“Aston Martin”, “BMW”, etc). This initial query retrieved around 6 million News doc-
uments, which are further filtered by considering only documents spanning between 2001
and 2013 years and containing more than 2 car company names. The goal is to obtain
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Figure 23: Gantt diagram of the processed batches.

interesting documents describing events which involve two or more car companies. As said
before, the resulting dataset comprises 64.540 documents.

The dataset is split into 22 batches containing circa 3000 documents, and each batch
is sent to the LP pipeline for linguistic processing. In total, we used 8 VMs distributed
among the project partners.

Figure 23 shows the gantt diagram for whole LP processing. The elapsed times are
computed by analyzing the time spans of each output documents31. Because of the man-
ual involvement when uploading batches into the VMs, as well as due to problems when
installing the VM copies into the host computers of each partner, the figure shows that
we did not managed to run all VMs in parallel. However, we can see that if we group the
batches into 8 parallel lines the whole processing would be done circa 5 days

Table 6 shows the total time spent by each module, the total percentage of the time, and
the number of elements extracted. The elapsed times shown in the Table do not consider
that many of those documents are actually processed in parallel. The Table shows that
if the documents were processed sequentially, they would require 37.8 days to process.
Having 8 VM running on parallel, this number were actually processed in around 5 days,
as stated above.

Table 6 also suggests an unbalance regarding the time spent of each module of the
pipeline. The Semantic Role Labeling (SRL) module takes more than 70% of the processing
time, and is by far the module needing more time to complete its task. This results suggests
that SRL is a good candidate for parallelization; if we were able to execute several instances
of the SRL module in parallel, the overall performance of the linguistic processing would
boost considerably.

31Each LP processor writes a time span into the NAF header which allows us to analyze the time elapsed
by each component.
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Module Total time Percent # elements
TOK 12,152s 0.37% 35,187,862
POS 45,352s 1.38% 34,527,492
eCoref 73,098s 2.23% 3,747,382
NED 75,086s 2.29% 1,960,604
WSD 78,080s 2.38% 595,874
Opinion 82,127s 2.51% 114
Fact 91,960s 2.81% 4,327,233
NERC 112,643s 3.44% 2,475,062
DEP 121,092s 3.70% 31,943,943
multiword 261,586s 7.99% 636,292
SRL 2,322,472s 70.90% 5,246,967
Total 3,263,496 100 % 120,648,825

Table 6: Total time (in seconds) and percentage taken by each module in the pipeline.
The last column indicates the number of elements extractec from the text.

The Storm framework allows several instances of each topology node, thus allowing
the actual parallel processing. Following the so called parallelism hint, it is possible to
specify how many instances of each topology node will be actually running. Therefore, we
performed a separate experiment with the aim of measuring the expected performance gain
when executing time consuming modules in parallel. We defined a small pipeline comprising
only four modules: the tokenizer, the part-of-speech tagger, the Named Entity Recognizer
and the Word Sense Disambiguation modules. The experiment setting is the usual one,
where the four modules are executed using a Storm pipeline which mimics a pipeline
architecture (each module running sequentially one after the other). The experiments
were ran on a single PC computer with a Intel Core i5-3570 3.4GHz processor with 4 cores
and 4GB RAM, running Linux. We tested the NLP pipeline with 8 documents, each one
comprising about 1500 words and 60 sentences. We performed experiments for 4 documents
(6, 773 words and 271 sentences) and the complete set of 8 documents (12, 077 words and
462 sentences).

In the pipeline the WSD module is the most time consuming: for the 70 seconds needed
to process the documents, almost 60 seconds are spent in it. We thus experimented three
alternatives (dubbed Storm3, Storm4 and Storm5), with 3 instances (respectively, 4 and 5
instances) of the WSD module running in parallel.

Table 7 shows the time elapsed by processing the documents. The first four rows
correspond to the processing of 4 documents and the last four rows to the processing of
8 documents. As the Table shows, the baseline Storm topology runs at a performance of
about 95 words per second. The results also show that running multiple instances of WSD
does increase the overall performance significatively. The major gain is obtained with four
copies of WSD, with an increase of 60% in the overall performance. This result is expected,
giving the fact that the machine where the experiments were ran has 4 CPU cores.

All in all, this initial experiments have shown that there is a big room for improvement
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Total time words per sec sent. per sec. gain

Four documents

Storm 1m11.372s 94.9 w/s 3.8 sent/s 0.0%
Storm3 0m38.274s 177.0 w/s 7.1 sent/s 46.4%
Storm4 0m33.540s 201.9 w/s 8.1 sent/s 53.0%
Storm5 0m34.472s 196.5 w/s 7.9 sent/s 51.7%

Eight documents

Storm 1m57.277s 103.0 w/s 3.9 sent/s 0.0%
Storm3 0m58.492s 206.5w/s 7.9s/s 54.5%
Storm4 0m50.415s 239.6w/s 9.2s/s 60.8%
Storm5 0m54.544s 221.4w/s 8.5s/s 57.6%

Table 7: Performance of a small NLP pipeline in different settings. Storm is the basic
pipeline topology. Storm3 is the Storm pipeline with 3 instances of the WSD module
(Storm4 has 4 instances and Storm5 5 instances, respectively).

regarding NLP processing performance. A careful identification of the most time and
resource consuming NLP modules allows creating parallel topologies which yield better
performance. With the use of large clusters with many nodes, we expect a significant
boost in the performance of overall NLP processing.

4.4 Towards a full streaming NLP processing

So far we have described an architecture which allows parallel execution of several NLP
modules and a batch processing of many documents in a short time. However, the ultimate
goal of the project is to allow a streaming processing of documents, i.e., dealing with the
continuous processing of streams of documents reaching at any time. This section will
describe the design of such an architecture, using the pipeline described on the previous
section as a starting point.

The basic streaming architecture is shown in Figure 24. The documents enter to the
processing stage via a single entry-point and are put into a document queue. The pipeline
is implemented following a Storm topology, as usual. In this setting, each node of the
topology may reside on a different physical machine; the Storm controller (called Nimbus)
is the responsible to send the tuples among the different machines, and guarantees that each
message undergoes all the nodes in the topology. In our approach, the Nimbus supervisor
node retrieves the documents, converts them into tuples, and send them to the processing
topology.

Unlike the approach described in the section above, where a document is completely
analyzed inside a single VM, this setting allows distributed processing of documents into
several VMs. That is, different stages of the pipeline a document undergoes are actually
executed on different machines. This approach allows multiple copies of LP modules run-
ning inside a specialized VMs or even dynamically increasing the computing power for the
LP modules which require more computational resources.
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Figure 24: Linguistic processing, streaming computing approach.

As can be seen in the Figure, the KnowledgeStore plays a fundamental role in this
setting, as it serves as central repository where all intermediate results are stored. The
KnowledgeStore has to allow parallel access for storing and retrieving documents, as other-
wise it would be a major bottleneck in the whole architecture. Besides, partial results have
to provide pointers to the original NAF documents, so that the document can be rebuilt
from the partial annotations it contains.

In future experiments we want to try the following settings:

• Non linear topologies. The architectures described so far follow the pipeline approach,
but in principle we could also consider executing non linear topologies, where two
modules are processing the same document at the same time. Non linear topologies
require considering the following aspects:

– We need to clearly identify the pre- and post-requisites of each module, thus
deducting the indications as to which modules must precede which and which
modules can be ran in parallel on the same document.

– We need a special bolt which receives input from many NLP modules bolts (each
one conveying different annotations on the same document) and merges all this
information producing a single, unified document.

• Granularity. NLP modules work at different type of granularity. For instance, a POS
tagger works at a sentence level, the WSD module works at paragraph level, whereas
a coreference module works at a document level. We want to experiment splitting
the input document into pieces of the required granularity, so that the NLP modules
can quickly analyze those pieces, thus increasing the overall processing speed.
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5 KnowledgeStore

The initial design of the KnowledgeStore is documented in Deliverable D6.1 (“Knowledge-
Store Design”)32. In this section, we briefly recall the main characteristics of the current
version of the KnowledgeStore Design, pointing the interested reader to Deliverable D6.2
(”KnowledgeStore version 1”) for a more comprehensive exposition.

5.1 Introduction

The rate of growth of digital data and information is nowadays continuously increasing.
While the recent advances in Semantic Web Technologies (e.g., the Linked Data33 initia-
tive), have favoured the release of large amounts of data and information in structured
machine-processable form (e.g., RDF dataset repositories), a huge amount of content is
still available and distributed through websites, company internal Content Management
System (CMS) and repositories, in an unstructured form, for instance as textual docu-
ments, web pages, and multimedia material (e.g., photos, diagrams, videos). Indeed, as
observed in [Gantz and Reinsel, 2011], unstructured data accounts for more than 90% of
the digital universe.

Although bearing a clear dichotomy for what concern their form, the content of struc-
tured and unstructured resources is far from being separated: they both speak about
entities of the world (e.g., persons, organizations, locations, events), their properties, and
relations among them. Indeed, coinciding, contradictory, and complementary facts about
these entities could be available in structured form, unstructured form, or both. There-
fore, partially focusing on the content distributed in only one of these two forms may not
be appropriate, as complete knowledge is a requirement for many applications, especially
in situations where users have to make (potentially critical) decisions. Moreover, some
applications inherently require considering both types of content: an example is question
answering [Ferrucci et al., 2010], where often a user query can only be answered by com-
bining information in structured and unstructured sources.

Despite the last decades achievements in natural language and multimedia processing,
now supporting large scale extraction of knowledge about entities of the world from un-
structured digital material, frameworks enabling the seamless integration and linking of
knowledge coming both from structured and unstructured content are still lacking.

We present the implementation of the first version of the KnowledgeStore, a framework
that contributes to bridge the unstructured and structured worlds, enabling to jointly
store, manage, retrieve, and semantically query, both typologies of contents. Figure 25
shows schematically how the KnowledgeStore manages these contents in its three represen-
tation layers. On the one hand (and similarly to a file system) the resource layer stores
unstructured content in the form of resources (e.g., news articles, multimedia files), each
having a textual or binary representation and some descriptive metadata. Information

32Further additional details are provided in [Rospocher et al., 2013]
33http://linkeddata.org
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Figure 25: KnowledgeStore Content.

stored in this level is typically noisy, ambiguous, and redundant, with the same piece of
information potentially represented in different ways in multiple resources. On the other
hand, the entity layer is the home of structured content, that, based on Knowledge Repre-
sentation and Semantic Web best practices, consists of axioms (a set of 〈subject, predicate,
object〉 triples), which describe the entities of the world (e.g., persons, locations, events),
and for which additional metadata is kept to track their provenance and to denote the
formal contexts where they hold (e.g., in terms of time validity and point of view). Dif-
ferently from the resource layer, the entity layer aims at providing a formal and concise
representation of the world, abstracting from the many ways it can be encoded in natural
language or in multimedia, and thus allowing the use of automated reasoning to derive
new statements from asserted ones [De Bruijn and Heymans, 2007]. Between the afore-
mentioned two layers is the mention layer. It indexes mentions, i.e., snippets of resources
(e.g., some characters in a text document, some pixels in an image) that denote something
of interest, such as a an entity or an axiom of the entity layer. Mentions are automatically
extracted by the modules of the NLP pipeline, that enrich them with additional attributes
about how they denote their referent (e.g., with which name, qualifiers, “sentiment”). Far
from being simple pointers, mentions present both unstructured and structured facets (re-
spectively snippets and attributes) not available in the resource and entity layers alone,
and are thus a valuable source of information on their own.

Thanks to the explicit representation and alignment of information at different levels,
from unstructured to structured knowledge, the KnowledgeStore enables the development of
enhanced applications, and favours the design and empirical investigation of several infor-
mation processing tasks otherwise difficult to experiment with. Effective decision making
support could be provided by exploiting the possibility to semantically query the content of
the KnowledgeStore with requests that combine structured and unstructured content (a.k.a.
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mixed queries), like e.g., “retrieve all the documents mentioning that person Barack Obama
participated to a sport event”34. The KnowledgeStore favours the implementation and eval-
uation of tools which exploit available structured knowledge to improve the performance
of coreference resolution tasks (i.e., identifying that two mentions refer to the same entity
of the world), as shown in [Bryl et al., 2010], especially in cross-document / cross-resource
settings. Finally, the joint storage of extracted knowledge, the resources it derives from,
and extraction metadata provides an ideal scenario for developing, training, and evaluating
ontology population techniques. In particular, the KnowledgeStore data model favours the
exploration of a number of computational strategies for knowledge fusion, i.e., the merg-
ing of possibly contradicting information extracted from different sources, and knowledge
crystallization, i.e., the process through which information from a stream of multimedia
documents is automatically extracted, compared, and finally integrated into background
knowledge.

Given the KnowledgeStore ambition to cope with a huge quantity of data and resources
(potentially in the range of billions of documents), as required by today / next future
applications, the development of the KnowledgeStore vision is necessarily driven by scala-
bility aspects: performances in storing, accessing, and querying the KnowledgeStore have
to gracefully scale with respect to the size of managed content. For this reason the imple-
mentation of the KnowledgeStore is based on technologies compliant with the deployment
in distributed hardware settings, like clusters and cloud computing.

The remaining of this section of the deliverable is organized as follows. In Section 5.2
we present in details the NewsReaderKnowledgeStore data model. In Section 5.3 we illus-
trate how the other NewsReader modules can interact with the KnowledgeStore, detailing
in particular the type of (semantic) requests they can submit to it, while in Section 5.4 we
describe the KnowledgeStore architecture, presenting the modules composing the frame-
work. Section 5.5 concludes presenting some initial experiments to asses the scalability
performance of the KnowledgeStore and the technologies it relies on.

5.2 The Knowledge Store Data Model

The data model defines what information can be stored in the KnowledgeStore, in accor-
dance with the modelling and specification work of WP3, WP4, WP5 and, in particular,
the annotation format (NAF). It serves both as a basis for the design of the KnowledgeStore
architecture and interfaces, and as a shared model that permits WP4 and WP5 linguistic
processors and the decision support tool suite of WP7 to cooperate.

The NewsReader KnowledgeStore data model is depicted in the UML class diagram of
Figure 26. The model is organized in the three resource, mention and entity layers. Re-
sources and mentions are described using a closed but configurable set of types, attributes
and relations, while entities are described with an open set of axioms annotated with

34Fulfilling this request involves: (i) to reason in the structured part about which events “Barack Obama”
participated to that are of type “sport event”, and identify the corresponding participation statements;
(ii) to exploit the links to the mentions those statements have been extracted from; and (iii) to exploit the
linking between those mentions and the resources containing them.
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Enumeration values (nwr: namespace)
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Figure 26: NewsReader data model.

metadata attributes (e.g., for provenance) and holding inside specific contexts. Resources,
mentions, entities, axioms, and contexts are identified by externally-assigned URIs. The
model is assimilable to an OWL 2 ontology [Motik et al., 2009] that can be encoded in RDF
with Named Graph [Carroll et al., 2005] used for metadata. This allows to encode both the
model definition and its instance data using RDF [Beckett, 2004] (e.g., for interfacing with
the KnowledgeStore or for Linked Data publishing). Named Graphs [Carroll et al., 2005]

can be used to encode metadata and contexts, and other Semantic Web technologies—such
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as the SPARQL query language35—can be leveraged to deal with represented data. Next,
we provide a brief overview of the content representable in each layer.

Resource layer The resources of interest in NewsReader are News and NAFDocuments.
News are described using metadata from the Dublin Core vocabulary (dct:* attributes),
augmented with NewsReader-specific attributes to encode additional information (e.g., the
originalFileName of the imported news). For NAF annotations only the NAF version,
publicId (dct:identifier), available layers, employed NAF processors (dct:creator) and link
to annotated news are represented, as they are useful in accessing and selecting data in
the KnowledgeStore, while annotation data is stored in the NAF resource file itself.

Mention layer The representation of mentions derives from the NAF specification. The
offset of a mention in a news, as well as its extent, are encoded using attributes from
the NLP Interchange Format (NIF) vocabulary36, thus enabling interoperability with tools
consuming NIF data. Four main types of mentions are distinguished:

• Entity mentions denote entities in the domain of discourse (linked via refersTo),
and are further characterized based on the type of entity. Object mentions refer to
persons, locations, organizations, products, financial objects and mixed entities (dis-
criminated via entityType), like e.g. “Barak Obama”, “NASDAQ Index”, “a family”,
“500 cars”. Object mentions are further characterized by a syntactic head, a syntac-
tic type (e.g., name, nominal or pronoun) and a linguistic entity class (e.g., specific
referential). Time mentions are described using the subset of TIMEX3 properties
selected for NAF (e.g., TIMEX3 type, normalized value and function within the doc-
ument). Event mentions are characterized using a number of NAF attributes: the
linguistic class of the event (e.g., speech-cognitive); the lemma of the token conveying
the event (pred); the part-of-speech (pos), e.g., noun or verb; the certainty and factu-
ality of the event, including a factuality confidence value; the tense, aspect, polarity
and modality of the verbal form used. In addition, references to external resources
further specifying the type of event are stored (framenetRef, verbnetRef, propbankRef,
nombankRef). For all the entity mentions, an optional localCorefID attribute can be
used to group mentions coreferring within a document.

• Relation mentions express relations between two entities, whose mentions are iden-
tified by source and target links. Different kinds of relation mentions are stored.
Causal links (CLink) express a causal relation between two events, while temporal
links (TLink) denote a certain temporal relation (relType, e.g., before, include, simul-
taneous) among two events or time expressions. Subordinate links (SLink) express
certain structural relations among events, while GLinks denote a grammatical rela-
tion among events (as in “the share drop came on the same day”, with “drop” and
“came” being events). Participation mentions denote the participation of an entity to

35http://www.w3.org/wiki/SPARQL
36http://nlp2rdf.org/nif-1-0
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an event in a certain thematic role (semRole), possibly further specified by references
to external resources (framenetRef and similar).

• Signal and CSignal mentions identify pieces of text supporting the existence of, re-
spectively, a temporal or causal relation, to which they are linked by relations signal.

• Value mentions are numerical expressions used for quantities (cardinal numbers in
general), percentages and monetary expressions; the type of value is stored.

Entity layer Different kinds of entities are stored, including persons, organizations, geo-
political entities or locations, events, points and intervals in time extracted from text.
The type of entity is conveyed by an axiom consisting of an rdf:type triple. The con-
text in which an axiom holds in is described and identified in terms of temporal validity
(sem:hasTimeValidity) and point of view (sem:hasPointOfView, e.g., “Financial Times”); the
Simple Event Model (SEM) [van Hage et al., 2011] and the OWL Time37 vocabularies are
used to that purpose. Axiom metadata consists of a confidence value (confidence), a prove-
nance indication (dct:source) and a crystallized flag (crystallized). Confidence is represented
on a 0.0−1.0 scale and quantifies how reliable an extracted axiom is. Provenance is stored
for a background knowledge axiom and denotes the external source it has been imported
from (e.g., DBPedia).38 The crystallized flag is set for axioms belonging to background
knowledge or assimilated to it after repeated extraction of the conveyed information, ac-
cording to some crystallization algorithm. This algorithm (to be defined as part of WP6
T6.2) will exploit information such as how many mentions an axiom has been extracted
from (attribute ks:extractedFrom) and in which time frame, as well as which resources it
was extracted from (e.g., which kind of news) and how reliably; it will also consider pre-
existing background knowledge, in form of TBox constraints and other ABox assertions an
axiom has to be consistent with.

5.3 The Knowledge Store Interfaces

The KnowledgeStore presents a number of interfaces, offered as part of the KnowledgeStore
API, through which external clients may access and manipulate stored data. In the def-
inition of these interfaces for the first version of the KnowledgeStore, some design choices
were made:

• coarse-grained operations, that operate on whole sets of objects at a time (e.g., the
simultaneous update of all the mentions of a certain resource), are provided in order
to enable the efficient retrieval and modification of large amounts of data;

37http://www.w3.org/TR/owl-time/
38The adoption of a provenance model to track sources, authority, and tool processing activities, is under

definition at project level at the time of writing this deliverable. The data model here presented will thus
be revised according to the resulting provenance model.
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• operations work according to a request-response message exchange pattern: the client
issues the request to the KnowledgeStore and waits for its reply;

• API calls modifying a set of objects (e.g., resoures, mentions, entities) are applied
to each object in the set in a transactional way that satisfies ACID properties39,
i.e., each object in the set is either successfully modified or not modified at all, with
the change permanently persisted and no concurrent client seing intermediate states
during the modification of the object;40

• data validation on input data is performed for each API request, in order to check the
preconditions which are instrumental to the successful completion of the operation
(e.g., presence and validity of object identifier and mandatory attributes);

• client authentication (based on username/password credentials) is enforced to restrict
access only to authorized clients.

All the technical partners of the consortium were involved in the definition of the
operations to be implemented by the KnowledgeStore. These operations are offered to the
user clients as part of the KnowledgeStore API through two endpoints: the CRUD endpoint,
that provides the basic operations to access and manipulate the objects stored in all the
layers the KnowledgeStore, and the SPARQL endpoint, that enables flexible access to the
semantic content stored in the entity layer.

CRUD Endpoint The CRUD endpoint provides the basic operations to access and
manipulate (CRUD: create, retrieve, update, and delete) any object stored in any of the
layers of the KnowledgeStore. CRUD operations are defined in terms of sets of objects,
in order to enable bulk operations as well as operations on single objects. In details, the
following operations are provided:

• create (object descriptions) : assigned URIs and/or creation errors

Stores new objects based on their supplied descriptions.

• retrieve (condition, output attributes) : object descriptions

Returns all the objects matching a supplied condition.

• update (condition, object description, merge criteria) : update errors

Updates all the objects matching a supplied condition, setting one or more of their
attributes (or entity axioms) to a particular value; if the attributes were already set,
merge criteria can be optionally used to combine old values with new ones.

39Transactions are units of work—either a single operation or a sequence of operations—to which certain
properties are associated, such as the ACID properties of relational databases: atomicity, consistency,
isolation and durability.

40Transactional guarantees on the whole API call are significantly more complex and expensive to
provide, as the call may affect millions of records for which a transactional log should be kept. Such
guarantees are not feasible with the technologies currently adopted for the KnowledgeStore. Should this
situation change, they will be considered for a future release of the KnowledgeStore.
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• delete (condition) : deletion errors

Deletes all the objects matching a supplied condition.

• merge (object descriptions, merge criteria) : merge errors

Updates a set of objects given their identifiers, setting one or more attributes (or
entity axioms) to specific values and possibly applying merge criteria to combine old
and new values.

• count (condition) : # matching objects

Returns the number of objects matching a supplied condition.

• match (conditions and output attribute URIs at resource, mention, entity

and axiom level) : matching <resource, mention, entity, axioms> tuples

Returns a set of 〈resource, mention, entity, axioms〉 4-tuples whose mention occurs
in the resource, refers to the entity and supports the extraction of the axioms, and
such that the attributes on all the four components satisfy certain conditions; for
each tuple, a specified set of output attributes for the four components is returned.

SPARQL Endpoint As the entity layer of the KnowledgeStore is grounded in Knowledge
Representation and Semantic Web best practices, a further dedicated access mechanism
is provided to access in a flexible way (i.e., by means of queries in SPARQL, a standard
query language able to retrieve and manipulate data stored in Semantic Web reposito-
ries) entities and axioms41 stored in the KnowledgeStore. Recall that, in our approach,
each axiom corresponds to a set of 〈subject, predicate, object〉 triples within a named
graph [Carroll et al., 2005] that encodes the context where the axiom holds; the named
graph is uniquely identified by the context URI associated to the axiom. Therefore, clients
interacting with the KnowledgeStore through SPARQL have to be aware of this contextual
dimension when submitting the query to the KnowledgeStore, as well as when interpreting
the results obtained.

Here below is the description of the KnowledgeStore sparqlQuery() operation:42

sparqlQuery(query, dataset) : query solutions or triples

Evaluates the supplied SPARQL query on indexed statements or a subset of them
identified by the dataset parameter.

Both endpoints are made available to the external KnowledgeStore user clients via an
HTTP ReST API, which favours the integration of the KnowledgeStore in complex frame-
works with clients developed using different languages, technologies or execution platforms.
For the specific and relevant case of clients written in Java, a Java client library is also
offered; it builds on the HTTP ReST API and enables easy integration in Java-based tools.

41To be more precise, as described in 5.4, only crystallized and background knowledge axioms are
accessible via SPARQL.

42The definition of the sparqlQuery() operation is based on the SPARQL protocol standard [Feigen-
baum et al., 2013]; indeed, the SPARQL protocol is used to implement this API operation.
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5.4 The Knowledge Store Architecture

From a functional point of view, the KnowledgeStore is a storage server: the other News-
Reader modules are KnowledgeStore clients that utilize the services it exposes to store and
retrieve all the shared contents they produce and need. The KnowledgeStore is a passive
component, without any active role concerning the orchestration of other NewsReader mod-
ules. The lower part of figure 5.4 shows the KnowledgeStore client-server architecture. A
specifically developed Frontend Server implements the KnowledgeStore functionalities and
its two CRUD and SPARQL endpoints on top of a number of distributed and scalable
components: the Hadoop HDFS filesystem for storing resource representations; HBase
with the OMID transaction manager and ZooKeeper synchronization service for storing
resource, mention and entity data and the Virtuoso triple store for indexing entity axioms
and supporting SPARQL querying. Next, we detail the main components.

Java applications 

KnowledgeStore 
Frontend 

Server 
 

KnowledgeStore Java client 

Hadoop HDFS 
(name & data nodes) 

HBase 
(multiple master & region server nodes) 

 

Virtuoso 
(single node) 

Mention Resource Entity Axiom RDF Triple Representation 

Any application  
 

(HTTP access to the KS, possibly 
exploiting SPARQL client libraries) 

 
 

(partial) replication  

Zookeeper 
(mult. nodes) 

 
distributed 

synchronization 
 

Client-side 

Server-side 

SPARQL endpoint CRUD endpoint 

 

OMID 
(single node) 

 
transaction 
manager 

Figure 27: KnowledgeStore architecture.

Hadoop HDFS component Hadoop43 is a frameworks developed by Apache to realize
scalable, distributed file systems supporting processing of huge amounts of data using the
MapReduce framework. The KnowledgeStore utilizes the Hadoop distributed file system
(DFS) to store resource representations, that is the physical files such as news documents
or the NAF annotations produced by the linguistic processors.

43http://hadoop.apache.org
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HBase component HBase44 is a frameworks developed by Apache realizing a scalable,
distributed column-oriented database. Distributed computation on multiple nodes, repli-
cation and fault tolerance with respect to single node failure are its key features.

HBase is used as a database to store, with dedicated tables, resource metadata, men-
tions, contexts and axioms attributes. The last type of object—axioms—deserves a special
description, as they are also stored in the Virtuoso component, but with different pur-
poses. Full information about axioms is stored in the HBase component, where each
axiom is stored with an URI, uniquely identifying it, a collection of triple 〈subject, pred-
icate, object〉 defining it, the URI of the context where the axiom holds, and axiom-level
metadata attributes (e.g., provenance and confidence values). This solution allows for a
compact representation of statement metadata and fast lookup, but it’s not enough for
supporting SPARQL queries [Seaborne and Harris, 2013], which are instead provided by
the Virtuoso component. The latter holds only a subset of the axioms (e.g., only the crys-
tallized ones, so to reduce the load on Virtuoso), and just stores their triples and context
components, with the first encoded as a set of RDF triples and the latter as the named
graph containing those triples. Axiom metadata is not stored in Virtuoso, as (i) it is often
irrelevant to user queries, and (ii) its representation would require the use of expensive and
impractical techniques such as RDF reification.45

Virtuoso component Axioms are indexed in a triple store so to enable efficient, inference-
aware SPARQL-based query answering. Indexing affects only those axioms that satisfy
certain configurable criteria; this allows, for instance, to exclude from inference non-
crystallized axioms or axioms whose extraction confidence level is below a given threshold.

As remarked in Section 5.3, each axiom is stored as a set of 〈subject, predicate, object〉
triples within a named graph [Carroll et al., 2005] that encodes the context where the
axioms holds. Contexts are defined by additional triples (placed in a global graph) that
encode the contextual attributes such as point of view (sem:hasPointOfView) and time
validity (sem:hasTimeValidity) identifying the context. As anticipated, additional axiom
metadata are not indexed. By resorting to a triple store, indexed axioms can be easily
queried using SPARQL both as a language and access protocol (via so-called SPARQL
endpoint offered by triple stores).

Different triple store implementations offer different performance, scalability and fault-
tolerance characteristics, as well as licenses (e.g., open source vs commercial). The first
implementation of the KnowledgeStore will be based on the Open Source Edition of the
Virtuoso triple store46; more details about the selection of Virtuoso and some experiments
to assess its performance and scalability characteristics for use in the KnowledgeStore are
reported in Section 5.5. However, the use of the OpenRDF Sesame Java API47 will permit

44http://hbase.apache.org
45Note that in the KnowledgeStore implementation it is always possible to go back and forth from one

representation to the other, since axioms are uniquely identified by the set of triples defining them, which
are stored both in HBase and in the Triple Store.

46http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
47http://www.openrdf.org/
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Figure 28: Detailed internal modules organization of the KnowledgeStore

the KnowledgeStore to largely abstract from the adopted triple store implementation48,
thus allowing to change it within (and beyond) the scope of NewsReader.

KS Frontend component The Frontend component implements the external API of
the KnowledgeStore by dispatching client requests to the appropriate internal components;
it also controls the indexing of statements in the Virtuoso component.

As mentioned in Section 5.3, the KnowledgeStore offers through the KS Frontend two
complementary endpoints: the CRUD endpoint and the SPARQL endpoint. These end-
points are made available via an HTTP ReST API that can be directly accessed by client
applications or accessed indirectly through the released Java Client Library.

Figure 28 shows the detailed internal modules organization of the KnowledgeStore. It is
worth noticing here that, for the sake of scalability, the KnowledgeStore is expected to be
deployed on a cluster (potentially in a cloud environment), therefore additional tools are
implemented to deal with the complexity of such deployment. This includes, for exam-
ple, management scripts for operations at system level such as infrastructure (daemons)
start-up & shut-down, data backup & restoration, statistics gathering, distributed syn-
chronization services (e.g., Zookeeper).

48Methods for efficient bulk data ingestion are specific to each triple store implementation.
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5.5 Preliminary scaling experiments

We conducted some preliminary experiments to assess the scalability of the technologies
adopted in the KnowledgeStore. In particular, we performed some tests on loading the
HBase component with documents, mentions, and entities, while we performed some ex-
periments on loading and querying the triple store component (Virtuoso).

5.5.1 HBase and Hadoop scaling experiments

A loading test has been performed on a prototype release of the KnowledgeStore based
exclusively on the HBase and Hadoop components, since the triple store was non included
in that architecture.

Table 8: Loading statistics.
Resources Mentions Entities Contexts Size
235860 733,738 30493 723 40.7 GB (HDFS)
(txt 86.19% (org 10.38%
img 13.65% loc+gpe 20.77%
video 0.15%) per 34.22%

time 24.61%)

Table 8 shows the statistics in terms of Resources, Mentions, Entities and Contexts
which the KS has been successfully populated with – the type of Resources and Men-
tions are reported in parentheses. Moreover the total occupancy of the above objects in
the HDFS is also presented. Some remarks are worth noticing here: first, Entities and
Contexts comes from background knowledge. Second, the infrastructure of the HBase
and Hadoop components was limited to a single machine with 32 GB of RAM, hosting
all the daemons needed for the pseudo-distributed setup. Such configuration has proved
to be inadequate in terms of efficiency other than scalability. For the first release of the
NewsReader KnowledgeStore we are using a cluster of at least four machines.

5.5.2 Triple Store scaling experiments

The addition of a triple store component, motivated by the need to support better access
to entity data including structured (SPARQL) queries, is one of the major changes with
respect to the prototype version of the KnowledgeStore previously mentioned. For that
reason, specific activities were conducted in order to select a suitable triple store and
assess its performance and scalability characteristics in a concrete deployment.

Three requirements were considered for selecting the triple store: (i) it must be an
open source product; (ii) it must provide good SPARQL 1.1 query performances; and
(iii) it must handle 500M triples in a single server deployment. The 500M triples figure
is a rough estimate of the dataset size in NewsReader: it consists of a ∼400M triples
subset from DBPedia with the information most relevant to NewsReader and covering ∼4M
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Figure 29: Performances of data loading.

entities/events, plus ∼100M triples extracted from news (roughly: 25 triples for the same
4M entities/events). Given these requirements and available triple store benchmarks49—
in particular the April 2013 results of the Berlin SPARQL Benchmark (BSBM)50—we
restricted our focus to the Open Source Edition of the Virtuoso triple store.51 This edition
is limited to a single server deploy (our initial environment), where it has been shown to
easily handle a billion of triples given appropriate hardware; multi-server deployment with
additional scalability and transparent fault tolerance can be obtained with the (commercial)
Enterprise Edition.

We used the BSBM dataset generator and evaluation suite to evaluate Virtuoso in a
concrete deployment with two goals: (i) better understand the hardware requirements of
the triple store and its performances when deployed on a machine less powerful—and more
easily available—than the one used in the April 2013 results52; and (ii) gather valuable
knowledge on how to configure and access Virtuoso for optimal performances, to be lever-
aged in the subsequent development of the KnowledgeStore. More in details, we deployed
Virtuoso 6.1.6 on a RedHat 6.4 (Linux 2.6) machine with an Intel(R) Core(TM) i7 CPU, 16
GB RAM and 500 GB disk (the type of machines available to the KnowledgeStore devel-
opment team), and evaluated performances of data loading and SPARQL query answering
with different dataset sizes (from 1M to 500M triples generated with the BSBM tool).

Figure 29 shows the size on disk and the load throughput in triples per second when
varying the dataset size from 1M triple to 500M triples. Size on disk increases almost
linearly, while throughput decreases for larger dataset sizes, meaning that loading time

49http://www.w3.org/wiki/RdfStoreBenchmarking
50http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V7/
51http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
52Dual Intel(R) Xeon(TM) E5-2650 CPU, 256 GB RAM, three 1.8GB disks in RAID 0.
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Figure 30: Performances of query answering.

increases more than proportionally with dataset size (loading 500M triples takes 11h 30m,
6.7 times rather than 5 times the 1h 42m required for loading 100M triples); however, it is
worth noticing that at 500M triples a throughput of 12K triples/s is still supported.

Figure 30 shows execution time and throughput of query answering with different
dataset sizes and number of concurrent clients (1, 4, 8, 64 clients). The base unit for
both graphs is the ‘query mix’, i.e., the execution of a set of 25 parameterized queries
(with random choice of parameters) over the triple store. As expected, execution time of
a query mix increases with the increase of the dataset size and the number of concurrent
clients. The behaviour of throughput, measured in query mixes per hour, is instead more
complex. For small dataset sizes, it can be noticed that throughput increases when mov-
ing from 1 to 8 concurrent clients, while it decreases for 64 clients. This is explained by
the total load being essentially limited by CPU and not by disk (in fact, for small sizes
data is almost all buffered in RAM and disk is seldom accessed): as the CPU has 8 cores
(4 real × 2 due to hyper-threading), 8 concurrent clients represent an optimal situation,
whereas additional clients cause a decrease of throughput due to the overhead introduced
by the contention of the 8 cores. For larger dataset sizes, instead, throughput figures for
different numbers of clients tend to coincide. This is explained by the total load being now
limited by disk and not CPU, so the overhead on the CPU introduced after 8 clients is
no more relevant. It is worth noticing that this change in behaviour, as well as the major
change in the steepness of execution time curves, occur around a size of 100M triples, a
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value for which the dataset size (∼14 GB measured on disk) approaches the amount of
RAM available to Virtuoso, and after which buffering of the whole dataset in RAM is no
more possible and disk accesses become increasingly frequent. This shows how RAM is the
factor impacting the most on Virtuoso performances, and suggest us to deploy the triple
store on a machine with as much RAM as possible.
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6 Decision Support System

6.1 Introduction

The main point of end-user interaction with the NewsReader event indexes is the Decision
Support System (DSS). The DSS is a graphical user interface that is meant to support
users when making strategic decisions.

In essence, the DSS assists the decision making task by providing insight into the
sequences of events that led up to a current situation so that a user can extrapolate to
what might happen in the future.

The DSS will not aim to predict future events, but aid users in drawing their own
conclusions. This is because a predictive system can only work well under the assumptions
that all relevant data is available and that the mechanics of consequence are sufficiently
and correctly modeled. Both of these assumptions are likely to fail in an open domain such
as the news.

The main problem with investigating information structures as complex as the News-
Reader event indexes is that there is a huge space of possible interactions and correlations
that might be relevant. A common way to search for relevant parts of such large feature
spaces is to use feature selection, regression, and other statistical techniques. However,
many facts relevant to the decision making process are rare events, that by themselves will
never stand out in statistics. Also, the relevance of facts can only really be judged by the
end users themselves.

We attempt to solve these problems in a novel way, which has only recently become
feasible due to the advances made in parallel and distributed systems and hardware graph-
ics accelleration. As opposed to preselecting features we aim to allow the end user to
interactively navigate through the large space of correlated features.

This leads us to two essential requirements. One being that the DSS needs to be a
visual environment. The other, that the DSS needs to show the actual data (in the case of
NewsReader, the underlying news articles from which events were extracted), with which
the user is acquainted, and not derived information that can appear unfamiliar to the user.

In the remainder of this section of the deliverable we expand on these requirements
(Section 6.2), demonstrate an adapted version of SynerScope’s Marcato visualization tool
(Section 6.3), show how Marcato will be technically embedded within the rest of the project
(Section 6.4) and how it will be extended with NewsReader-specific additions. We conlude
with an overview and the system requirements for Marcato.

6.2 Requirements

As discussed in Section 6.1, the DSS needs to 2 core characteristics in order to be a useful
tool for decision making by end users: It needs to be visual and it must show the actual
underlying data. In this section, we expand these generic characteristics to more specific
requirements.
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No Divination The main goal of the DSS should be to provide insight in past events.
The DSS does not provide extrapolations based on confidence values or probabilities.

No Tunnel Vision The DSS must be able to rapidly change the perspective of the in-
vestigation, depending on the user’s changing understanding of and thus changing
interest in the data.

No Reports The DSS must be a graphical tool.

No Magic The DSS must show actual data, which is recognizable.

No Hiding The DSS must show all the data, not just aggregate statistics that hide im-
portant details.

No Waiting The DSS must be fast and scalable.

No Bias The DSS should not use a predefined vocabulary of concepts, but show whatever
occurs in the data.

6.3 SynerScope Marcato

The technical implemenation of the DSS will largely consist of the SynerScope Marcato
tool, a visual analytics application that delivers real time interaction with dynamic network-
centric data. Marcato supports simultaneous views and coordinates user interaction, en-
abling the user to identify causal relationships and to uncover unforeseen connections. In
this section we describe Marcato in more detail. Specifically, we describe how data can
be imported into Marcato, which visualization options are available, and how the end-user
can interact with the data in each visualization.

6.3.1 Importing Data

Marcato is designed to work with a very basic information schema, called the SynerScope
Interface Schema (SIS). SIS consists of two object types: Nodes and Links. Links connect
two Nodes. Both Nodes and Links can have additional attributes of a number of data types,
including integers, floating point numbers, free text, date and time, latitude and longitude.
Nodes and Links need a key attribute. This attribute is used to connect Nodes and Links.
It is not predefined which kinds of data objects can be Nodes, Links, or attributes of Nodes
or Links. This can be decided at the time of import.

A common decision, in the case of simple events such as transactions, communication,
and interpersonal relations, is that events are modeled as Links between entity Nodes. Al-
ternatively, events and entities can both Nodes while Links are simple associations between
them.
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Currently, Nodes and Links can be imported in tabular form from Relational Database
Systems, like PostgreSQL53, ParAccel54, or MonetDB55. Alternatively, they can be im-
ported from Character Separated Value (CSV) files stored on disk. The details of this
process are described in Deliverable 7.1.

6.3.2 Visualizing Data

Marcato offers several types of visualizations. These are rendered using OpenGL to take
advantage of hardware-accelerated rendering. Each visualization is described in detail in
its own section below.

Table View The Table View provides a traditional spreadsheet view on the data. For
each of the SIS data source types, i.e. each type of Nodes and each type of Links, there is a
separate sheet. The Table View shows all the data as a table of values. Rows in the table
correspond to either Links or Nodes, depending on which sheet is selected. The columns
represent the attributes of the Nodes or Links. The user can select rows, which are then
also highlighted in other Views. The Table View can also be used to sort Nodes or Links
by the values of a certain field by clicking the header cells of the columns in the table.

Figure 31 shows a typical Table View.

Hierarchy Editor View The SIS allows for Nodes and Links. There can be multiple
types of Nodes or Links. For example, if we consider Nodes to be people or books and
links to be book reviews linking a person to a book they wrote a review about, then we
have two Node types, people, and books, and one Link type, reviews.

In the Hierarchy Editor View it is possible to define a hierarchical ordering (of arbitrary
depth) on each Node type. Each layer of the hierarchical ordering groups nodes together
based on some common attribute value. For example, if the people Nodes have two at-
tributes, ”city of residence” and ”age”, we can define two hierarchical levels, one based
on city, the other on age. Categorical attributes are grouped by distinct values, numerical
attributes are distributed over a certain number of bins. The Node hierarchies can be
changed in real time. All Nodes in a hierarchy categories can be selected together, which
allows for quick exploration of common properties of the Nodes in that category in other
Views.

Figure 32 shows the hierarchy editor on the right and the resulting hierarchy applied
in the Hierarchical Edge Bundling (HEB) view (see next visualization) on the left.

Hierarchical Edge Bundling View The Hierarchical Edge Bundling View (HEB) is
the primary network view in Marcato. Each Node is visualized as a point on a circle, and
each Link is visualized as a curved line between its source and target Node. The Nodes

53http://www.postgresql.org/
54http://www.paraccel.com/
55http://www.monetdb.org/
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Figure 31: The Table View with a Selection in orange. In this figure, each line is one
investment round with properties such as a date, currency, and amount of money.
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Figure 32: The Hierarchy Editor View on the right side defining a hierarchy for the two
Node types in this data set. The resulting respectively one and two-level hierarchy is
applied to the HEB on the left.

NewsReader: ICT-316404 January 10, 2014



System Design, draft 92/115

Figure 33: The Hierarchical Edge Bundling View, showing a Selection in orange, a Highlight
in blue, and the overlap between the two as dark blue. The nodes on the circle represent
employees (grouped categorically) while the edges between them represent e-mails. The
bundle between the Vice President category and Employee category is being Highlighted
with a slicing mous gesture.

are sorted so that changes in the network over time have a minimal impact on the location
of the Nodes on the circle. This makes for a stable view of the network.

The Nodes are grouped hierarchically, based on the ordering defined in the Hierarchy
Editor View. The Links between Nodes of the same hierarchical category are bundled
together (as if they were tied together with a cable tie). The thickness of the bundle is
caused by overlapping lines (each line is still shown individually) and shows the amount
of interaction between categories. Bundles can be selected together by making a slicing
gesture by clicking and dragging the mouse over a bundle. The HEB is illustrated in
Figure 33.

Massive Sequence View The Massive Sequence View (MSV) is the primary temporal
view in Marcato. Each Node gets a fixed position on the horizontal axis. Nodes are grouped
hierarchically in the same fashion as in the HEB. Links between Nodes are represented by a
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Figure 34: The Massive Sequence View, showing the same interactive hierarchy as Fig-
ure 33. Again, the nodes (now on top) represent employees (grouped categorically) while
the edges between (now ordered by time from top to bottom) them represent e-mails.

horizontal line between the respective positions of the Nodes. On the vertical axis the user
can select a scalar attribute, typically a time or date. This orders the Links temporally.

The MSV is typically used to inspect patterns in time. When certain categories of Nodes
interact with each other in some temporal pattern, this becomes instantly recognizable in
the MSV. An example of a time line, showing the same Nodes and Links as Figure 33 is
shown in Figure 34.

Map View The Map View is the primary spatial view in Marcato. The user can select
two attributes from any Node or Link data source to interpret as WGS84 latitude and
longitude coordinates. These attributes are used to plot the Nodes (not the Links) on a
map as points. By default, the Open Street Map56 tile server is used over an internet
connection to show a map background behind the points. The points are plotted in such a
way that the user can see the point density. An additional scalar attribute can be selected
to indicate point size on the map. Figure 35 shows a typical Map View presentation.

Scatter Plot View The Scatter Plot View uses Cartesian coordinates to relate the
values of two attributes of either Nodes or Links. Dots are drawn on a two-dimensional
chart, the positioning relative to the horizontal and vertical axis being determined by the
attribute’s values. A third attribute can used to set the size of the dots.

56http://www.openstreetmap.org
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Figure 35: The Map View, showing geographic point density and size.

Figure 36: The Scatter Plot View, showing three variables: x, y, and magnitude, with the
sign of the magnitude depicted as red (negative) or green (positive). Shown is a plot of
biochemical data, specifically molecule weight (x) versus surface area (y).
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Figure 37: The Search and Filter View, showing that the search results are Selected in all
other Views, in this case, the Map View and Scatter Plot View. This Figure also shows
that all color coding can be customized to provide accessibility for the color blind. In this
case the Selection is shown in yellow instead of orange. Shown are criminal events in the
city of Chicago.

Search and Filter View The Search and Filter View is an interactive view that allows
the user to select Nodes or Links by searching by value. The user can type in a search query
that is matched against the value of a certain attribute for a given Node or Link type. The
current version of the Search and Filter View allows for case sensitive or insensitive exact
string matching.

6.3.3 Interacting with Data

The user can interact with the data in SynerScope Marcato’s views in several ways: By
selecting and highlighting, drilling down or up, and expanding selections. Every interaction
method is coordinated across multiple views and over the node hierarchy. This principle,
together with the details of each interaction method, is described below.
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Coordinated Views SynerScope Marcato uses multiple coordinated or linked views to
provide different but simultaneous visualizations of the same data. Selections and High-
lights are applied across views. This means that if a node or link is highlighted in one
particular view, it will also be highlighted in all other views. Similarly, if a node or link is
selected in one view, it is selected in all other views.

Selection and Highlight One of the main interaction paradigms of Marcato is the
combined use of Selections and Highlights. When a user expresses that his or her atten-
tion is focused on a certain Node, Link, or category/bundle of Nodes or Links, Marcato
Highlights these objects with a color that makes them stand out from the other objects.
This Highlight is simultaneously performed in all visible Views. The Highlight is changed
dynamically and designed to support fast real-time interaction. When a user confirms that
the Highlight is of interest by clicking then the Highlight turns into a more static Selection.
The Selection stays the same until a new Selection is made. The Selection typically gets
a different color than the Highlight, which allows the user to contrast the two sets to see
commonalities and differences. Commonalities between the Selection and the Highlight get
their own color that makes it stand out from the other objects.

Drill down/up There are two methods to navigate large data sets in Marcato. The first
is controling the set of items that is imported into Marcato from the source database with
filters. The second is Drilling down and Drilling up.

Drilling down rescopes the domain of investigation to the current Selection. Essentially,
it allows the user to zoom in on an interesting part of the data set to get a more detailed
view. Marcato always shows all the data, therfore drilling down does not add more detail,
but by hiding the rest of the data it provides the Selection with more room to be visualized,
which provides a clearer view of the individual data points.

Drilling up performs the converse operation. It rescopes the domain of investigation
to the entire data set, preserving the current Selection. This can allow the user to select
small parts of the data that are of interest in a Drilled down view, after which the user
can Drill up to see the context of the Selection in the entire data set. An important point
to note is that Drilling down can change the distribution of the data values, which makes
different patterns in the data stand out.

Network expansion Network expansion allows the user to extend the currently Se-
lected set of Nodes or Links with respectively Links or Nodes that are directly connected.
This way it is possible to let the entire Selection grow hop-by-hop over the Link network.
Network connectivity, or the lack of connectivity, can be investigated in this way.

Drilling down provides more detail, but it also cuts away the context, so another com-
mon use is to gather the local network context of a Selection of Nodes before Drilling down,
which can provide the user with a minimal relevant collection of contextual information
to judge the patterns in the Drilled down view. A number of fine-grained expansion tools
are also available, such as expansion within the domain of the selection. This expands the
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currently Selected set of Nodes and Links with all the Links between currently selected
Nodes that are not selected.

Node hierarchies The Node hierarchy that was made in the Hierarchy Editor View is
always visible in a number of different Link-centric views, such as the HEB and MSV. The
individual Nodes always reside at the bottom of the hierarchy as leaves on a tree. The
branches of the tree are partitioned at every level, and the root of the tree corresponds
to the entire current scope (either the entire data set, or the current Drill down). Each
category in the hierarchy functions as a button, which when clicked selects all the Nodes
it subsumes. An important point to node about the hierarchy is that it can be changed
in real time. This makes it possible to rapidly change the categorization of the data, and
hence the bundles of links that appear in the HEB or MSV. This means creating a specific
hierarchy essentially constitutes a hypothesis that the grouping imposed by that hierarchy
correlates with the actual occurrence of Links in the data set. When this hypothesis is
true, then patterns will show up in the HEB or MSV, otherwise adding the hierarchy does
not reveal any order.

For example, the data shown in Figure 33 is communication traffic between people.
The hierarchy on the nodes is based on the role of the communicating people in their orga-
nization. The corresponding implicit hypothesis is that people’s respecitive roles influence
whether or not they talk to each other. In any company one would expect this hypothesis
to hold. If this were not the case, then the internal communication does not correspond to
the organizational structure of the company. The fact that there are clearly visible bundles
in Figure 33 shows that the hypothesis is true.

6.4 Embedding and Extending Marcato

6.4.1 Connection to KnowledgeStore

The current Marcato importer provides interactive mapping functionality for the projection
of tabular Node and Link data onto the SIS. Projecting RDF data onto the SIS is a slightly
more complex and currently unsupported process, that requires a new specific importer to
be made.

Within the NewsReader project, SynerScope will develop an interactive, graphical
SPARQL query builder that allows the user to define a mapping from event data in RDF
to SIS without writing program code. This query builder will be guided by the available
data and help the user with building queries. The resulting query will be used to extract
tabular results from a SPARQL endpoint that will then automatically be imported into
Marcato without further mapping.

Additionally, within Marcato, the user should have access to the original documents
from which a certain event was derived. The KnowledgeStore’s CRUD API will allow for
the retrieval of the original document given a certain event retrieved through its SPARQL
endpoint, so SynerScope will develop a connector for the CRUD API as well.
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Figure 38: From left to right, the thickness of the beige line represents the size of Napoleon’s
army as it marches from Kaunas to Moscow. From right to left, the black line represents
the army’s size as it retreats. The line chart at the bottom shows the temperature during
the retreat.

6.4.2 Plugin System

In addition to the existing HEB, MSV, map, scatter plot, and search-and-filter views,
SynerScope Marcato can be customized by developing plugin views using HTML5 and
JavaScript with AJAX calls. These plugin views can interact with the other views as
part of the Multiple and Coordinated Views set through a JavaScript object that provides
bidirectional communication between the Plugin View and the rest of Marcato. This allows
users to make Javascript routines that influence the current Highlight and Selection or that
access the data. HTML5-based views are typically much less performant than the other,
QT and OpenGL-based Views.

Narrative Charts Within the NewsReader project, one of the additions to Marcato
will be an implementation of interactive Narrative Charts as a Marcato plugin. Narrative
charts show the movements and interactions of actors over time. An early example of a
narrative chart (shown in Figure 38) is the flow map drawn by Charles Joseph Minard
to visualize Napoleon’s troop movements during his Russian campaign of 1812 [Minard,
1869]. A more recent example developed at the University of Waterloo 57 is a chart of
character interactions in a Tintin comic, shown in Figure 39.

Suppose a user has configured Marcato to show entities as Nodes with the Links be-
tween entities being events. This will allow the user to visualize the storylines of a limited

57http://csclub.uwaterloo.ca/˜n2iskand/?page id=13
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Figure 39: The point where the lines (originating at a character’s name on the left) meet
represents an interaction of those characters in the story.

Selection of Nodes/Entities as a Narrative Chart. The Narrative Chart will be a Coordi-
nated View in Marcato. This means, for example, that the user can Select a number of
Links/Events in the HEB and the corresponding Narrative Chart will be rendered automat-
ically when the Narrative Chart Plugin View is open. Highlighting parts of the Narrative
Chart will consequently Highlight the corresponding parts of other views, including the
HEB.

Narrative Charts are related to the Massive Sequence View. The main difference be-
tween the two is that in the MSV Nodes have a fixed position depending on the current
hierarchy, which in Narrative Charts they have a varying location depending on which
Nodes/Entities they share Links/Events with in a certain time frame. Another differ-
ence is that in the MSV, Links/Events are shown as lines between Nodes/Entities that
bridge the gap between the source and target Node/Entity, while in Narrative Charts the
Nodes/Entities move towards each other so that Links/Events become a point. This makes
it impossible to draw a consistent visualization when a Node/Entity can have simultaneous
Links/Events to two unrelated and hence distant Nodes/Entities.

Force direction can partially overcome this problem, but will not solve it completely.
Narrative Charts can be very informative for a limited number of events and participants,
but become incomprehensible for large numbers. This, combined with the limited perfor-
mance of Web plugins motivates the decision to limit the scope of Narrative Charts to a
small number of storylines in the initial version of the DSS.

Web Lookup Another addition that will be made to Marcato is a Web Lookup plugin
that performs automatic lookup of contextual information over a HTTP connection and
presents the results either in the form of a ranked result list, like results from a search
engine, or in the form of the actual displayed contextual information, like Web pages in a
browser. The Web Lookup plugin will have two modes of interaction.

First, users will be able to find documents without typing in a query, but simply by
selecting interesting patterns in the storylines shown in the rest of Marcato. The corre-
sponding source documents will be automatically retrieved and displayed. For instance,
there is a sudden burst of activity surrounding a certain Node that strikes the user in the
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MSV. Selecting this burst will yield the corresponding news items that allow the user to
directly judge the relevance of the burst.

Second, users will be able to use the Web Lookup plugin as a search engine to find
documents and automatically see the surrounding storyline context of the content of that
document in the rest of Marcato. For instance, the user will be able to search for a certain
topic by tying in a query in a search box which will yield a number of documents, ranked
by relevance. These documents discuss parts of the storylines that touch upon this topic.
The corresponding Nodes and Links will be automatically selected in the rest of Marcato.

6.5 Conclusion

Marcato has all of the properties that are required for the interactive manipulation of events
from the news, but has a few technical shortcomings. Most notably, it requires interfacing
with the NewsReader KnowledgeStore (see Section 6.4), and a number of NewsReader
specific visualization techniques, such as narrative charts (i.e. metro line pictures of the
life lines of actors) and context visualization (e.g. hypertext view of the original news
articles that describe parts of the investigated story).

We conclude our overview of the DSS by noting that SynerScope Marcato can be run
locally on the end users own machine, if said machine meets the minimum hardware and
software requirements as defined in Deliverable 7.1. Alternatively, Marcato can be run
remotely on a virtual machine in the cloud and streamed to the end users machine. This
allows users to user the Decision Support Tool Suite from their own computer regardless
of the technical specification, even a tablet computer is sufficient, as long as the network
access to the cloud server is sufficiently stable.
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7 Conclusions and Future Work

This deliverable describes the first version of the System Design architecture developed
in NewsReader to process large and continuous streams of English, Dutch, Spanish and
Italian news articles.

We have described many aspects related to the system design, such as:

• Describe a general architecture for event extraction which is capable to scale and
process a large number of documents in short time.

• Define the NAF data format which is the basis for the inter-operability of the NLP
tools integrated into the project, as well as a proper API and library for NLP modules
to deal with NAF annotations.

• Describe the GAF and SEM data formats for formally representing events structures
which is independent of the mentions as present in the documents.

• Describe the central data repository, the KnowledgeStore, which enables to jointly
store, manage, retrieve, and semantically query its contents.

• Describe the data visualization module, which represents highly dense and dynamic
data as produced by the project, thus allowing decision markers to make well informed
decisions.

In the future, we plan to implement a fully parallel architecture for streaming process-
ing which is able to continuously accept new documents and process them quickly. This
architecture will allow many modules work on the same document in parallel. It will also
allow having many copies of the most time consuming tasks. The experiments done so far
suggest a significant boost in the performance.

Regarding the KnowledgeStore, we plan to evaluate it from a functional perspective
based on its capability to (i) store an overwhelming daily stream of economical and finan-
cial contents (news articles and data), (ii) support a complex NLP pipeline in extracting
knowledge from those contents, and (iii) provide suitable online and offline query capabili-
ties for use in a decision support tool for professional decision-makers. In the same context,
we also plan to carry out an extensive performance evaluation to test the scalability of the
KnowledgeStore in a real (clustered) production environment, in terms of scalability with
respect to data size, query load, and tolerance to nodes and network failures. Specific
experiments will be carried out to test the average response times of typical and most
frequently used KnowledgeStore services, including, for example: (i) loading of a daily set
of news and extracted mentions in NAF format; (ii) lookup of each type of object; and
(iii) retrieval of sets of objects filtered by typical conditions.

Regarding the DSS system, we plan to run remotely the DSS component on a virtual
machine in the cloud and streamed to the end users machine. This allows users to user the
Decision Support Tool Suite from their own computer regardless of the technical specifica-
tion, even a tablet computer is sufficient, as long as the network access to the cloud server
is sufficiently stable.

NewsReader: ICT-316404 January 10, 2014



System Design, draft 102/115

NewsReader: ICT-316404 January 10, 2014



System Design, draft 103/115

References

[Agerri et al., 2013] Rodrigo Agerri, Itziar Aldabe, Zuhaitz Beloki, Egoitz Laparra, Mad-
dalen Lopez de Lacalle, German Rigau, Aitor Soroa, Marieke van Erp, Piek Vossen,
Christian Girardi, and Sara Tonelli. Event detection, version 1. NewsReader Deliver-
able 4.2.1, 2013.

[Allemang and Hendler, 2009] D. Allemang and J. Hendler. Semantic Web for the Work-
ing Ontologist: Effective Modeling in RDFS and OWL. Safari Books Online. Elsevier
Science, 2009.

[Alon et al., 1996] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of
approximating the frequency moments. In Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing, STOC ’96, pages 20–29, New York, NY, USA, 1996.
ACM.

[Baker et al., 2003] Collin F. Baker, Charles J. Fillmore, and Beau Cronin. The structure
of the FrameNet database. International Journal of Lexicography, 16(3):281–296, 2003.

[Beckett, 2004] Dave Beckett. RDF/XML syntax specification (revised).
Recommendation, W3C, February 2004. http://www.w3.org/TR/2004/

REC-rdf-syntax-grammar-20040210/.

[Bejan and Harabagiu, 2010] Cosmin Bejan and Sandra Harabagiu. Unsupervised event
coreference resolution with rich linguistic features. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, pages 1412–1422, 2010.

[Bizer et al., 2009] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the
story so far. International Journal on Semantic Web and Information Systems, 5(3):1–
22, 2009.

[Bosma et al., 2009] Wauter Bosma, Piek Vossen, Aitor Soroa, German Rigau, Maurizio
Tesconi, Andrea Marchetti, Monica Monachini, and Carlo Aliprandi. KAF: a generic
semantic annotation format. In Proceedings of the 5th International Conference on
Generative Approaches to the Lexicon GL 2009, Pisa, Italy, 2009.

[Bozzato and Serafini, 2013] Loris Bozzato and Luciano Serafini. Materialization calculus
for contexts in the semantic web. In Proceedings of the 26th Description Logics Workshop,
2013.

[Bozzato et al., 2012] Loris Bozzato, Francesco Corcoglioniti, Martin Homola, Mathew
Joseph, and Luciano Serafini. Managing contextualized knowledge with the ckr (poster).
In Proceedings of the 9th Extended Semantic Web Conference (ESWC 2012), May 27-31
2012.

NewsReader: ICT-316404 January 10, 2014

http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/


System Design, draft 104/115
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Bizer. Dbpedia spotlight: shedding light on the web of documents. In Proceedings of the
7th International Conference on Semantic Systems, I-Semantics ’11, pages 1–8, 2011.

[Minard, 1869] Charles Joseph Minard. Carte figurative des pertes successives en hommes
de l’Armée Française dans la campagne de Russie 1812-1813. Regnier et Dourdet, Paris,
1869.

NewsReader: ICT-316404 January 10, 2014

http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://projects.ldc.upenn.edu/ace/docs/EnglishEDCV2.0.pdf
http://projects.ldc.upenn.edu/ace/docs/EnglishEDCV2.0.pdf


System Design, draft 106/115

[Moens et al., 2011] Marie-Francine Moens, Oleksandr Kolomiyets, Emanuele Pianta, Sara
Tonelli, and Steven Bethard. D3.1: State-of-the-art and design of novel annotation
languages and technologies: Updated version. Technical report, TERENCE project –
ICT FP7 Programme – ICT-2010-25410, 2011.

[Motik et al., 2009] Boris Motik, Bijan Parsia, and Peter F. Patel-Schneider. OWL
2 Web Ontology Language structural specification and functional-style syn-
tax. Recommendation, W3C, October 2009. http://www.w3.org/TR/2009/

REC-owl2-syntax-20091027/.

[Neumeyer et al., 2010] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Ke-
sari. S4: Distributed stream computing platform. In Proceedings of the 2010 IEEE In-
ternational Conference on Data Mining Workshops, ICDMW ’10, pages 170–177, Wash-
ington, DC, USA, 2010. IEEE Computer Society.

[Nothman et al., 2012] Joel Nothman, Matthew Honnibal, Ben Hachey, and James R. Cur-
ran. Event linking: Grounding event reference in a news archive. In Proceedings of the
50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pages 228–232, Jeju Island, Korea, July 2012. Association for Computational
Linguistics.

[Palmer et al., 2005] Martha Palmer, Daniel Gildea, and Paul Kingsbury. The proposition
bank: An annotated corpus of semantic roles. Computational Linguistics, 31(1):71–106,
2013/03/12 2005.

[Pustejovsky et al., 2006] James Pustejovsky, Jessica Littman, Roser Sauŕı, and Marc Ver-
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A NewsReader Virtual Machines

This document is a guideline for copying the NewsReader Virtual Machine (VM), as well
as for installing new NLP modules into the VMs.

A.1 Files

You need two files for running the VM.

https://siuc05.si.ehu.es/~sisfetek/datuak_deskargatzeko/centos64newsreader.img

https://siuc05.si.ehu.es/~sisfetek/datuak_deskargatzeko/newsreader-vm.xml

The first is a big file with an ”empty” VM with Centos 6.4 Linux operating system and
one NLP module installed. The second is an short XML document needed for running the
VM.

A.2 Prerequisites

The are some pre-requisites the host machine has to fulfil for running the VM inside it:

• Linux operating system (any recent flavor would do it)

• In-kernel KVM virtualization capabilities. You can also determine if your system
processor supports KVM by running the following command:

% grep -E ’vmx|svm’ /proc/cpuinfo

if this command returns output, then your system supports KVM. You also have to
verify that the KVM-related feature is enabled in the machine’s BIOS.

• 64 bit CPU (x86 64)

A.3 Running the VM

For running the VM, follow these steps:

A.3.1 Preliminary steps (do it once):

1. Install the necessary software into the host machine. On Deban/Ubuntu machines
this includes the following packages:

• qemu-kvm

• libvirt-bin

• virt-manager
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2. Download centos64newsreader.img and newsreader-vm.xml into the host system.

3. Make sure that the path to the centos64newsreader.img file is accessible/readable
to the user qemu

4. Make a copy of the XML doc and rename it to a proper name. For the sake of this
document, the XML doc name will be newsreader-EHU.xml

5. Tweak the the XML file:

(a) Put a proper name into the <name> element (line 3). For example, ”newsreader-
EHU”.

(b) Create a new UUID using ’uuidgen’ program and paste it lo line 5 (into <uuid>

element)

(c) Put the absolute path to the IMG file in line 27 in the ”file” attribute of
<source> element.

(d) Currently the VM is configured to use 8Gb RAM. You can change this value by
editing around line 6 (<memory> and <currentMemory> elements).

6. If you experience problems running the VM, maybe you need to change line 23 and
put the name of the kvm emulator executable in your system.

7. Alternatively, you can create a bare new VM using the IMG image. Use the virt-manager
tool for this. The following link maybe useful:

https://docs.google.com/document/d/1exv1X3zmtGT6lZihlKW9T-EXKLzj_ODOWmndMe4I-c8/

edit?usp=sharing

A.3.2 Accessing the VM

From the host machine, cd to where the IMG and XML documents are and run the
following:

% virsh create newsreader-EHU.xml

Domain newsreader-EHU created from newsreader-EHU.xml

The machine should be running now. You can test this using the virsh list command:

% virsh list

Id Name State

----------------------------------------------------

17 newsreader-EHU running

Note: The VM needs around 3/4 minutes to completely load all the modules and
services, so please be patient until the login screen appears.

Now you can connect to the VM. There are several ways to run it:
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Connecting from the console

Being on the host computer you can connect from the console using this command:

% virsh console newsreader-EHU

Connected to domain newsreader-EHU

Escape character is ^]

You can exit from the VM at any time by pressing the ˆ] key (Ctrl + ’]’).

Connecting from VNC

Start VNC in the host machine and connect to ”localhost” using the ”VNC” protocol.
It will automatically show the console of the VM. Alternatively, run the virt-manager

program, and double click into the running VM. It will open a console window.

Connecting via ssh

The VM is configured to get an IP address using DCHP. The VM receives a local IP
address 192.168.122.X from inside the host machine. To exactly know which local IP it
has, you have to first access the VM via console or VNC. Once inside, you can get the IP
address of the VM for instance running the following command:

$ ifconfig eth0

eth0 Link encap:Ethernet HWaddr 52:54:00:8E:CD:B1

inet addr:192.168.122.98 Bcast:192.168.123.255 Mask:255.255.252.0

inet6 addr: fe80::5054:ff:fe8e:cdb1/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:568 errors:0 dropped:0 overruns:0 frame:0

TX packets:253 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:49026 (47.8 KiB) TX bytes:83040 (81.0 KiB)

In this case, the IP is 192.168.122.98 (look at the inet addr section).
Once we know which local IP the VM has, and being on the host computer, just ssh to

the VM. In the example above, just type:

% ssh newsreader@192.168.122.98

If you want to access the VM guest outside the host machine, perhaps the best way
is to use a bridged network configuration (not explained here). Alternatively, you can use
iptables for allowing external access through ssh to the VM. For example, you can access
guest’s ssh port using host’s 2222:
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iptables -t nat -A PREROUTING -p tcp --dport 2222 -j DNAT --to-destination 192.168.122.98:22

iptables -t nat -A POSTROUTING -p tcp --dport 22 -d 192.168.122.98 -j SNAT --to 192.168.122.1

iptables -D FORWARD 5 -t filter

iptables -D FORWARD 4 -t filter

In any case, consult with your IT staff to perform the above steps, as there are many
alternatives.

Changing IP

You can set an static IP for the VM by editing /etc/sysconfig/network-scripts/ifcfg-eth0

file inside the VM. For example, this lines would assign local IP 192.168.122.99:

DEVICE=eth0

HWADDR=52:54:00:8e:cd:b1

TYPE=Ethernet

ONBOOT=yes

NM_CONTROLLED=no

BOOTPROTO=none

IPADDR=192.168.122.99

NETMASK=255.255.252.0

GATEWAY=192.168.122.1

DEFROUTE=yes

and then restarting network service:

$ /etc/init.d/network restart

A.4 Shut down the VM

Logout from VM user and then, from the host computer:

% virsh destroy newsreader-ixa

Alternatively, and being on the VM, run the following command:

$ sudo shutdown -h now

A.5 User and password

The VM has one user:

login: newsreader

pwd: ----------

the root user has the same password as newsreader. You can run root commands
within the newsreader user using the sudo command.
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A.6 Directory structure

All the NLP modules and document directories are under the /home/newsreader directory.
This directory structure is as follows:

~/components

Here lay the actual NLP modules.

~/opt

The dependencies of the modules should be installed under this directory (not system-
wide). The idea is that we can synchronize the ~/components and ~/opt directories when
a module is updated or a new module is deployed.

~/docs

The documents are stored here. Initially, input documents are placed in ~docs/input.
When the document is successfully processed, the compressed output NAF is placed into
the ~docs/output directory and removed from ~docs/input. Alternatively, if the docu-
ment can not be processed, it is moved to the ~docs/error directory (and removed from
the original place).

A.7 Using the NLP pipeline

This section describes how to actually use the pipeline. Documents are uploaded to the
VM from outside, typically from the host machine. In th examples we use IP and PORT

for specifying the VM IP address and the port of the service. See section on Changing IP

above to know which IP the VM has. PORT will be usually 80.

A.7.1 Sending documents to VM

Use the curl command to send documents to the processing pipeline. For sending the
document doc.txt to the virtual machine (with IP and PORT), use the following command:

% curl --form "file=@doc.txt" http://IP:PORT/cm_upload_text_file.php

A.7.2 Getting output documents

As said above, the documents uploaded to the VM are stored in the ~docs/input directory.
Once the document is processed, and if there is no error, the output NAF will be put in
~docs/output. The name of the output NAF will be:

~docs/output/name.extension_MD5.naf.bz2

In the example above, the doc.txt document could get a name like:

~docs/output/doc.txt_8b45b51a553d702777bc627f262ea091.naf.bz2

Note that the output documents are compressed using the bzip2 program.
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A.7.3 Status of NLP processing

The VM has a service for knowing its internal status. Running this command:

% curl IP:PORT/cm_sysinfo.php

it gives information about the VM status:

VM: newsreader-EHU

Uptime: 15:25:58 up 7 days, 3:16, 7 users, load average: 2.41, 1.58, 0.91

Free Memory: 1201708 kB

Free Disk: 12940.1640625 MB

Pipeline processing status:

Pending files-> 5

Finished files-> 3

Failed files-> 2

A.8 Deploying NLP modules

This Section explains how to deploy new NLP modules into the VM. All the modules
should be installed under the newsreader user. The directory structure is as follows:

• Install the modules under the ~/components directory, creating a subdirectory as
appropriate (for instance, ~/components/EHU-ukb).

• If the modules have dependencies, install the dependencies into the ~/opt directory.
If this is not an option, please let us know.

• There has to be a run.sh script inside each module which reads input from STDIN,
runs the module, and write the output (NAF) to STDOUT. This script has no param-
eters.

• The run.sh script has to be callable (and will be called) from outside the directory
where the module is. So make sure the run.sh script uses absolute paths or cd’s into
the component’s directory first.

• Please create an INSTALL document inside the module clearly specifying which steps
are needed for deploying the module (how to install dependencies, etc).

You will find an example of a deployed module in ~components/EHU-ukb.
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A.9 Updating NLP modules

Modules are updated on the ”master” VM at EHU. The address of the master VM is
u017940.si.ehu.es, and the ssh port is 2223. Thus, the way to connect to the master
VM is:

ssh -p 2223 newsreader@u017940.si.ehu.es

Once the modules are updated on the master VM, each VM copy can synchronize and
update the modules by just running the following command:

~/update_nlp_components.sh

The script will connect to the master VM (asks for the usual password), and update
all components.

A.10 If something goes wrong

If the processing stalls or there is any other kind of problems, the easiest way to proceed
is to just reboot the VM. From a shell command inside the VM, just run

$ sudo shutdown -r now

and the system will reboot. When the machines starts again, it will scan the input doc
directory and start processing the documents present there. Remember that the machine
needs 3/4 minutes to boot and launch all the services and daemons.

If you have any question, please do not hesitate to contact us:

Kike Fernandez <kike.fernandez@ehu.es>

Aitor Soroa <a.soroa@ehu.es>
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