
System Design, Final
Deliverable D2.2

Version FINAL

Authors: Zuhaitz Beloki1, German Rigau1, Aitor Soroa1, Antske Fokkens2, Kees
Verstoep2, Piek Vossen2, Marco Rospocher3, Francesco Corcoglioniti3,
Roldano Cattoni3, Stefan Verhoeven4, Mathijs Kattenberg5

Affiliation: (1) EHU, (2) VUA, (3) FBK, (4) Netherlands eScience Centre, (5) SURF-
sara

Building structured event indexes of large volumes of financial and economic
data for decision making

ICT 316404

System Design, Final 2/102

Grant Agreement No. 316404
Project Acronym NEWSREADER
Project Full Title Building structured event indexes of

large volumes of financial and economic
data for decision making.

Funding Scheme FP7-ICT-2011-8
Project Website http://www.newsreader-project.eu/

Project Coordinator

Prof. dr. Piek T.J.M. Vossen
VU University Amsterdam
Tel. + 31 (0) 20 5986466
Fax. + 31 (0) 20 5986500
Email: piek.vossen@vu.nl

Document Number Deliverable D2.2
Status & Version FINAL
Contractual Date of Delivery January 2015
Actual Date of Delivery February 3, 2015
Type Report
Security (distribution level) Public
Number of Pages 102
WP Contributing to the Deliverable WP2
WP Responsible EHU
EC Project Officer Susan Fraser
Authors: Zuhaitz Beloki1, German Rigau1, Aitor Soroa1, Antske Fokkens2, Kees
Verstoep2, Piek Vossen2, Marco Rospocher3, Francesco Corcoglioniti3, Roldano
Cattoni3, Stefan Verhoeven4, Mathijs Kattenberg5

Keywords: system design, big data, scaling NLP
Abstract: This deliverable describes the second version of the System Design
framework developed in NewsReader to process large and continuous streams of
English, Dutch, Spanish and Italian news articles. The deliverable describes two
alternative architectures to automatically process massive streams of daily news and
reconstruct longer term story lines of events. Both architectures are complementary
and are meant to be used on two different settings (batch and streamiing processing,
respectively). The deliverable also describes a number of experiments were carried
out to investigate where potential bottlenecks are found while passing text through
our NLP pipeline. We also present the integration of the KnowledgeStore into a
HPC cloud infrastructure as a first important step to enhance the scalability of the
repository.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 3/102

Table of Revisions

Version Date Description and reason By Affected sec-
tions

0.1 December 2014 Structure of the deliverable set Aitor Soroa All

0.2 December 2014 NAF2SEM architecture Piek Vossen naf2sem

0.3 January 2015 NAF2SEM processing Piek Vossen naf2sem

0.4 January 2015 Added Haddop and provenance sections Antske Fokkens 2,5,appendix1

0.5 January 2015 First final version Aitor Soroa all

0.6 3 February 2015 Changes after internal revision by Syner-
Scope

Aitor Soroa all

0.7 3 February 2015 Check by coordinator VUA -

NewsReader: ICT-316404 February 3, 2015

System Design, Final 4/102

NewsReader: ICT-316404 February 3, 2015

System Design, Final 5/102

Executive Summary

This deliverable describes the second version of the System Design framework developed
in NewsReader to process large and continuous streams of English, Dutch, Spanish and
Italian news articles. Deliverable D2.1 “System Design, draft” described the basic architec-
ture of the NewsReader system, including the representation schemas and the first version
of the distributed pipeline. This deliverable is a continuation of the work described in D2.1
and it describes the work performed under the second year of the project.

Within the project we have developed annotation schemes for representing linguistic
information at many levels, from basic annotations such as tokenization and POS tagging
to complex models for representing events and participants. In this deliverable we will
describe the latest addition to the Grounded Annotation Framework (GAF), specifically
those related to modeling the representation of provenance information. Provenance is
important to know what the source of information is, so that users can compare perspec-
tives from different sources, or verify whether the represented information is correct. The
result of the processing pipeline is a set of documents annotated using the NLP Annota-
tion Format (NAF), also developed within the project. These NAF documents are then
converted to GAF representations, removing duplicates and harmonizing the information
that come from different documents. In the deliverable we describe how this process is
actually performed.

Processing massive quantities of data requires designing solutions that are able to run
distributed programs across a large cluster of machines. We have developed two alterna-
tive architectures for NLP distributed processing, for a batch and streaming computing
scenarios, respectively. In the deliverable we describe each of the solutions, detailing the
main components of each one. This batch architecture was used to process 1.3 Million
articles for the January 2015 Hackathons and user evaluation.

The deliverable also present a set of scripts developed within the project that quickly
create a basic cluster of nodes for distributed processing. All the software, including the
NLP modules, as well as the basic components of the clusters is publicly available and is
distributed under open licenses.

Finally, we present the integration of the KnowledgeStore into a HPC cloud infrastruc-
ture as a first important step to enhance the scalability of the repository.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 6/102

NewsReader: ICT-316404 February 3, 2015

System Design, Final 7/102

Contents

1 Introduction and scope 11

2 Efficiency Experiments 13

2.1 Performance per module . 13

2.2 A more detailed analysis of the performance per module 15

2.3 Observations . 19

3 Architectures for parallel NLP processing 21

3.1 Linguistic modules for Event Detection . 22

3.2 Frameworks for Big Data analysis . 23

4 Streaming architecture using Storm 25

4.1 Newsreader processing cluster . 25

4.1.1 NLP processing topology . 28

4.1.2 MongoDB integration . 30

4.1.3 VM from scratch . 33

4.2 Experiments . 34

4.3 Batch and Streaming Processing . 34

4.4 Non linear topologies . 37

5 Batch architecture using Hadoop 39

5.1 Hadoop . 39

5.2 Cascading . 39

5.3 Scaling up news processing . 40

5.4 Processing the car data . 41

5.5 Future work and possible improvements . 42

6 Modeling Provenance and Attribution 45

6.1 Provenance and Attribution . 45

6.2 Attribution annotations . 46

6.3 Proposed attribution models . 47

6.3.1 Requirements . 48

6.4 Modeling attribution . 50

7 Conversion of NAF to SEM 55

7.1 Architecture for processing NAF to SEM 55

7.2 Performance of the NAF to SEM processing on the automotive data set . . 58

8 The KnowledgeStore 61

8.1 Setup and Configuration . 61

8.2 Experiments . 61

NewsReader: ICT-316404 February 3, 2015

System Design, Final 8/102

9 Conclusion and future work 62

A Processing step per phase for individual modules 65

B Alternative proposals for modeling attribution 75
B.1 Proposal 1: Attribution applies to the statements 77
B.2 Proposal 2: Attribution applies to the relation between source and statement 80
B.3 Proposal 3: Attribution is assigned by reifying relations 81
B.4 Concluding remarks . 83

C NewsReader architecture for distributed NLP processing 85
C.1 VM from scratch . 86

C.1.1 Create a basic cluster . 86
C.1.2 Making copies of worker VMs . 88
C.1.3 Virtual machines XML definitions 90
C.1.4 Booting and stopping the cluster 90
C.1.5 Deploying worker VMs into different host machines 91
C.1.6 Knowing which machines are connected to the boss VM 91

C.2 Running the topology . 91
C.2.1 Topology XML specification . 92

C.3 Troubleshooting and tools . 93
C.3.1 Synchronizing the modules . 93
C.3.2 Document queue . 94
C.3.3 Starting and stopping the services 98

NewsReader: ICT-316404 February 3, 2015

System Design, Final 9/102

List of Tables

1 NLP modules of the NewsReader event detection framework for several lan-
guages. 22

2 LP modules of the NewsReader pipeline, with the pre- and post-requisites. 29
3 Processing time for a batch of 100 documents on a cluster comprising 6

worker nodes. 35
4 Statistic for batch processing. Throughput measures the ratio between the

number of documents and the elapsed time. 36
5 Statistic for streaming processing for linear and non linear topologies. . . . 37

NewsReader: ICT-316404 February 3, 2015

System Design, Final 10/102

NewsReader: ICT-316404 February 3, 2015

System Design, Final 11/102

1 Introduction and scope

This deliverable describes the second version of the System Design framework developed
in NewsReader to process large and continuous streams of English, Dutch, Spanish and
Italian news articles. The goal of the NewsReader project is to automatically process
massive streams of daily news in 4 different languages to reconstruct longer term story
lines of events. For this purpose, the project will extract events mentioned in the the news
articles, the place and date of their occurrence and who is involved. Based on the extracted
knowledge, NewsReader will reconstruct a coherent story in which new events are related
to past events. The research activities conducted within the project strongly rely on the
automatic detection of events, which are considered as the core information unit underlying
news and therefore any decision making process that depends on news articles.

The NewsReader architecture for NLP processing integrates a large number of tools
which relate to various research areas such as Information Retrieval and Extraction, Nat-
ural Language Processing, Text Mining or Natural Language Understanding. Within the
project we distinguish two main types of linguistic processing: intra-document linguistic
processing and cross document linguistic processing. Intra-document linguistic processing
involves the linguistic processing of a single text document, and comprises steps such as
tokenization, lemmatization, part-of-speech tagging, parsing, word sense disambiguation,
Named Entity and Semantic Role Recognition for all the languages in NewsReader. Be-
sides, Named entities are linked as much as possible to external sources such as Wikipedia
and DBpedia. Cross document processing involves steps such as document clustering or
linking textual expressions, i.e. mentions, from several documents which refer to the same
entity or event, creating together chains of coreferring mentions.

Within the project we have developed annotation schemes for representing linguistic
information at many levels, from basic annotations such as tokenization and POS tagging
to complex models for representing events and participants. Intra-document processing
modules represent the annotations using NAF, the NLP Annotation Format developed
within the project. NAF serves as a shared model that allows these NLP tools to cooperate.
Events and their relations are represented using GAF [Fokkens et al., 2013], an extremely
compact annotation framework that allows the elimination of duplication and repetition.
GAF is used to detect event identity, complete incomplete descriptions, and chain and
relate events into plots (temporal, local and causal chains). GAF formally distinguishes
between mentions in NAF and instances in the Simple Event Model (SEM, [van Hage et
al., 2011]). This way, it allows the abstraction over different mentions of the same events,
participants, places and times results in a single representation of an instance with links
to the places where it is mentioned in the news.

As said before, both NAF and GAF are described in deliverable D2.1: “System Design
- draft”. In this deliverable we will describe the latest addition to GAF, specifically those
related to modeling the representation of provenance information. Provenance is important
to know what the source of information is, so that users can compare perspectives from
different sources, or verify whether the represented information is correct. We also describe
the process of converting GAF representation from the NAF documents as produced by

NewsReader: ICT-316404 February 3, 2015

System Design, Final 12/102

the basic intra-document NLP processing modules.
Processing massive quantities of data requires designing solutions that are able to run

distributed programs across a large cluster of machines. Besides, issues such as paral-
lelization, distribution of data, synchronization between nodes, load balancing and fault
tolerance are of paramount importance. The NewsReader project will follow a streaming
computing paradigm, where documents will arrive at any moment and have to be processed
continuously. The project foresees the processing of huge amounts of textual data at any
rate. In this deliverable we describe the scaling solutions that have been implemented
during the second year of the project. We have implemented two alternative architectures
for distributed event detection. The first architecture is an enhancement version of the
architecture implemented in the first year of the project and is meant to be used on a
streaming computing scenario. The second architecture is an heavily optimized version of
the processing pipeline, and it is focused on a batch processing setting.

The result of the day-by-day processing of large volumes of news and information is
stored in the KnowledgeStore central data repository, which plays a crucial role in the
NewsReader architecture. We present the integration of the KnowledgeStore into a HPC
cloud infrastructure as a first important step to enhance the scalability of the repository.

This deliverable is structured as follows. We start in Section 2 describing some experi-
ments carried out to analyze processing times spent by each module and locate potential
bottlenecks. Section 3 describes the differences among the processing architecture devel-
oped in the first year with the solutions presented in this deliverable, and provides a brief
description of the main frameworks used to linguistically analyze big quantities of data.
Sections 4 and 5 explain the streaming and batch approaches implemented during this
year, and describe several experiments carried out in each of them. Section 6 describes
the modeling of provenance within GAF, whereas Section 7 explains the conversion of
the information represented by means of NAF annotations to GAF. Section 8 describes
the activity of porting the KnowledgeStore on the SURFsara HPC-Cloud infrastructure, a
necessary step to integrate the KnowledgeStore repository to the processing architecture.
Finally, section 9 draws some conclusions.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 13/102

2 Efficiency Experiments

In the first year of NewsReader, we developed a fully functioning architecture to process
English data. In the second year, our efforts mainly focused on improving this architecture
and in particular in boosting its performance. A number of experiments were carried
out to investigate where potential bottlenecks are found while passing text through our
NLP pipeline. This section presents the outcome of these experiments. In Section 2.1, we
describe a set of experiments that tests performance of individual modules on documents
of different length. Section 2.2 provides a more detailed analysis of individual modules by
diving into the internal structure of the modules. It distinguishes between the time needed
to convert data to and from NAF, the time needed to start up the module or communication
to external resources and the time to carry out the actual NLP task. Section 2.3 presents
the main observations from the experiments described in this section.

2.1 Performance per module

In order to identify potential bottlenecks in scaling, it is useful to know how different
modules respond to larger amount of data. In the first non-parallelized stream setup,
documents are passed through the pipeline individually. Several experiments were carried
out that test the performance of each NLP module in relation to document size. Figure 1
represents the processing time in seconds per document. The experiment was run on a
single core of 8 GB memory.

We expect at least a linear increase in processing time when the amount of data in-
creases, because all modules in this experiment perform their analysis sequentially. The
analyses on these relatively short articles are mainly flat. This indicates that most time
is not spent on the analysis itself, but rather on initiating the module (which takes an
equal amount of time for each document that is analyzed). Figure 2 presents the results
of a similar experiment using larger documents on a 2 core of 10 GB machine. Here, we
do observe a clear linear increase in processing time as documents become larger. These
results confirm our expectation and reveal that the modules are generally well-behaved and
processing time can be estimated relatively reliably based on average document length in
a set.

Figures 3 and 4 represent memory usage on a single core 8GB and dual core 10 GB
machine respectively. Many modules operate on a term or sentence level and therefore
memory size can remain relatively stable as the document length increases. For several
modules, memory use does not increase at all when the document becomes longer. The
language model they use takes up most of the memory and this is not influenced by the
amount of data that is analyzed. Modules that do make use of information found all over
the document reveal (unsurprisingly) a correlation between memory use and document
length. This is particularly clear for the word sense disambiguation and event coreference
modules, where there is a linear relation between document length and used memory.

The semantic role labelling module is by far the most costly module in the pipeline
both as far as processing time and as far as memory use are concerned. This can mainly

NewsReader: ICT-316404 February 3, 2015

System Design, Final 14/102

be explained by the fact that this module also carries out syntactic parsing, a task that is
notorious for its complex modules and (theoretically) exponential growth in ambiguity as
sentence length increases.

Figure 1: Processing time of articles of different size

NewsReader: ICT-316404 February 3, 2015

System Design, Final 15/102

Figure 2: Processing articles of different size, 10G 2core

2.2 A more detailed analysis of the performance per module

The relation between processing time and document length indicates that several modules
seem to spend a significant amount of their time on starting up the process. This can be
observed in the relatively long processing time that even short documents require for some
modules (e.g. semantic role labelling). We therefore carried out an internal investigation of
processing time of our modules. This analysis investigates the following processing times:

NewsReader: ICT-316404 February 3, 2015

System Design, Final 16/102

Figure 3: Memory used for processing articles of different size

• The time of the entire process from start to the end

• The startup time, from start to main executable

• Time to construct NLP task object or load language models

• Time to interpret input NAF file

NewsReader: ICT-316404 February 3, 2015

System Design, Final 17/102

Figure 4: Memory used for processing articles of different size, 10G, 2core

• The core time carrying out the actual NLP task

• The time needed to create the output NAF from the output of the core task

• The end time from the last command to the overall end of the process

Figures 5 and 6 provide an overview of the average time of these steps for each module.
The modules marked with a * had a slightly different division of subtasks. Details can be

NewsReader: ICT-316404 February 3, 2015

System Design, Final 18/102

found in Appendix A, Figures 32 and 34, respectively.

Figure 5: Processing time for individual steps inside NLP modules in ms (figure)

Figure 6: Processing time for individual steps inside NLP modules in ms (table)

The results are largely in line with what we have observed in the experiments illustrat-
ing overall processing time of modules depending on document length. Components such
as the semantic role labelling module, the named entity recognizer, POS-tagger and mul-
tiwordtagger reveal relatively long setup times where language models are loaded. In fact,
the time required to initiate the module is on average longer than the actual processing
time. Time required to convert data from and to NAF also has a visible impact, though

NewsReader: ICT-316404 February 3, 2015

System Design, Final 19/102

this is limited to around 1 second per conversion in the most extreme cases. Nevertheless,
this time adds up and it may be worthwhile to look into improving efficiency at this end.

2.3 Observations

The analyses presented above reveal that the NLP modules are relatively well behaved,
in the sense that they very little outliers in processing time or memory use are observed
and their performance can be estimated quite reliably based on document length. The
semantic role labelling module requires significantly more memory and processing time
than any other module. Its average processing time is about one and half time as long as
the time all other components need together. We can thus gain in overall processing time
if we parallelize this step in our pipeline. About two thirds of the time of the semantic role
labelling module is needed to load the language model. This indicates that a significant
speed up can be achieved if we load the language model once for processing a batch of
documents.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 20/102

NewsReader: ICT-316404 February 3, 2015

System Design, Final 21/102

3 Architectures for parallel NLP processing

Extracting events from raw text is a complex task which requires state of the art NLP
processing at many levels. Besides, NewsReader requires such technology to be applied
on realistic volumes of text within hard time constraints. Those requirements have lead
us to adopt scalable architectures for performing parallel and distribute NLP processing.
The parallelization can be effectively performed at several levels, from deploying copies
of the same linguistic processor (LP) among servers to the reimplementation of the core
algorithms of each module using multi-threading, parallel computing. This last type of fine-
grained parallelization is out of the scope of the project, as it is unreasonable to expect
a reimplementation of all the NLP processors and algorithms needed to perform such a
complex task as mining events. In NewsReader we rather aim to processing huge amount
of textual data by defining and implementing an architecture for NLP which allows the
parallel processing of documents.

In the first year of the project we implemented a pipeline where each document was sent
to a single virtual machine containing all the NLP processing modules, which were executed
following a pipeline fashion, i.e., one module after another. Thus, the complete analysis
for each document was performed inside a single VM. The integration of the different NLP
components inside each VM was accomplished using the Storm framework (c.f. Section
3.2), which connected the pipeline steps according to a pre-defined topology1. This setting
allowed us to process more than 100.000 documents in a timely manner. However the
setting proposed had some drawbacks:

• Each VM is independent from each other, and there exist no synchronization among
them. Documents have to be manually split into batches, and each batch has to be
sent to the VMs manually.

• The framework was only capable to process batch of documents, and it can not deal
with scenarios such as a random but continuous arrival of documents.

• The framework can only run linearized pipelines. As a consequence, it is not possible
to implement non linear topologies under this framework.

For the second year of the project we have implemented two different architectures for
distributed event detection, described in Sections 4 and 5, respectively. The first architec-
ture is an enhancement of the architecture implemented in the first year of the project.
As such, it relies on virtual machines and the Storm framework to process documents .
However, unlike the previous version this new architecture implements a real distributed
pipeline, where one single document can be processed on several nodes within a cluster.

The architecture presented in Section 5 is an heavily optimized version of the processing
pipeline following a standard MapReduce model and implemented in a Hadoop environ-
ment (c.f. Section 3.2). This environment focuses in the efficient utilization of computa-
tional resources and prioritization of MapReduce jobs and are the standard computation

1This setting is thoroughly explained in project deliverable D2.1.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 22/102

Language # Modules
English 15 TOK, POS, NERC, Parse, Coref, Opinion, WSD, NED, SRL,

time, eCoref, tempRel, causalRel, Fact
Dutch 12 TOK, POS, NERC, Coref, Opinion, WSD, PMatrix, FNet,

NED, SRL, time, eCoref
Italian 9 TOK, POS, NERC, Chunk, Coref, dep, time, eCoref, Fact
Spanish 11 TOK, POS, NERC, Parse, dep, Coref, WSD, NED, SRL, time,

eCoref

Table 1: NLP modules of the NewsReader event detection framework for several languages.

model used today in mainframe computing, where system availability was a critical and
scarce resource.

The main difference between the architecture described in Section 4 and the approach
described in Section 5 is that whereas the latter is focused to work on a batch setting, the
former is meant to work on a streaming scenario. Batch processing requires all of the input
data to be completely available on the input store, e.g. HDFS , before any computation is
started. The framework process the input data and the output results are available only
when all of the computation is done. In contrast, streaming computing expects documents
to arrive to the pipeline in any moment, and aims at reducing the overall latency, that is,
the expected elapsed time needed to process one single document. In principle, streaming
computing allows to minimize the delay that prevent users from gaining important insights
affecting their analysis. Worse, it could provide an incomplete picture and therefore it can
lead to make wrong decisions.

3.1 Linguistic modules for Event Detection

This section briefly explains the Event Detection framework that is being developed in
the NewsReader project. The project aims to process large and continuous streams of
English, Dutch, Spanish and Italian news articles, and extract relevant information about
the events mentioned in the text. It also recognizes the major participants of the occurred
events, with a special focus on achieving cross-lingual semantic interoperability.

Many NLP modules have been developed within the NewsReader project to perform
state of the art event detection in several languages. Many of those modules are based
on third party tools, some have been developed from scratch for the project. The whole
description of the modules that constitute the NewsReader framework for event detection
is described in project Deliverable D4.4.4, “Event Detection, version 2”.

NewsReader uses an open and modular architecture for NLP as a starting point. Text-
processing requires basic and generic NLP steps such as tokenization, lemmatization, part-
of-speech tagging, parsing, word sense disambiguation, named-entity and semantic role
recognition, etc. for all the languages within the project. Semantic interpretation involves
the detection of event mentions and those named entities that play a role in these events,
including time and location relations. This implies covering all expressions and meanings

NewsReader: ICT-316404 February 3, 2015

System Design, Final 23/102

that can refer to events, their participating named entities, place and time relations. It
also means resolving coreference relations for these named entities and relations between
different event mentions. As a result of this process, the text is enriched with semantic
concepts and identifiers that can be used to access lexical resources and ontologies. For
each unique event, we will also derive its factuality score based on the textual properties
and its provenance. Table 1 shows the NLP modules used within NewsReader for four
languages.

The data-centric architecture of the IXA pipes relies on a common interchange format
in which both the input and output of the modules needs to be formatted to represent
and filter linguistic annotations: the NLP Annotation Format (NAF2 [Fokkens et al.,
2014]). NAF is a standoff layered representation of the analysis of a whole series of NLP
modules ranging from tokenization, part-of-speech tagging, lemmatization, dependency
parsing, named entity recognition, semantic role labeling, event and entity-coreference to
factuality and opinions. NAF is a document based representation and it is compliant with
the Linguistic Annotation Format (LAF [Ide et al., 2003]).

3.2 Frameworks for Big Data analysis

The two implementations that we have implemented for the NewsReader event detection
rely on two basic frameworks for Big Data analysis: Apache Hadoop and Storm. Apache
Hadoop3 is a framework designed to perform large scale computations that is able to scale
to thousands of nodes in a fault-tolerant manner. It is probably the most widely used
framework for large scale processing on clusters of commodity hardware. Hadoop imple-
ments MapReduce, a programming model for developing parallel and distributed algorithms
that process and generates large data sets. Hadoop is the basis for a large number of other
specific processing solutions such as Mahout4 for machine learning or Giraph5 for graph
processing, to name but a few.

As said before, Hadoop follows a batch processing model, where computations start
and end within a given time frame. In a streaming computing scenario [Cherniack et al.,
2003], however, the processing is open-ended. Thus, the program is designed to process
documents forever while maintaining high levels of data throughput and a low level of
response latency.

Storm6 is an open source, general-purpose, distributed, scalable and partially fault-
tolerant platform for developing and running distributed programs that process continuous
streams of data. Storm is agnostic with respect to the programming model or language
of the underlying modules, and, thus, it is able to integrate third party tools into the
framework.

2http://wordpress.let.vupr.nl/naf/
3http://hadoop.apache.org/
4https://mahout.apache.org/
5urlhttp://giraph.apache.org/
6http://storm.incubator.apache.org/

NewsReader: ICT-316404 February 3, 2015

http://wordpress.let.vupr.nl/naf/
http://hadoop.apache.org/
https://mahout.apache.org/
http://storm.incubator.apache.org/

System Design, Final 24/102

The main abstraction structure of Storm is the topology, a top level abstraction which
describes the processing node that each message passes through. The topology is rep-
resented as a graph where nodes are processing components, while edges represent the
messages sent between them. Topology nodes fall into two categories: the so called spout
and bolt nodes. Spout nodes are the entry points of a topology and the source of the
initial messages to be processed. Bolt nodes are the actual processing units, which receive
incoming text, process it, and pass it to the next stage in the topology. There can be
several instances of a node in the topology, thus allowing actual parallel processing.

The data model of Storm is a tuple, namely, each bolt node in the topology consumes
and produces tuples. The tuple abstraction is general enough to allow any data to be
passed around the topology.

In Storm, each node of the topology may reside on a different physical machine; the
Storm controller (called Nimbus) is the responsible of distributing the tuples among the
different machines, and of guaranteeing that each message traverses all the nodes in the
topology. Furthermore, Nimbus performs automatic re-balancing to compensate the pro-
cessing load between the nodes.

Section 4 describes our solution to Big Data processing using virtualization, Apache
Storm and a set of NLP tools organized in a data-centric architecture. The description of
such NLP tools is the subject of the next section.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 25/102

4 Streaming architecture using Storm

This section describes the approach for streaming processing implemented in the project.
The streaming computing architecture requires that the computation is not limited to any
timeframe. Instead, the pipeline is always waiting to the arrival of new documents, and
one such new document arrives the NLP processing starts. This setting allow NewsReader
to rapidly ingest, analyze, and correlate information as it arrives from real-time sources.

We implemented a distributed architecture for parallel processing of documents, com-
prising many processing nodes and a controller node that orchestrates the document pro-
cessing flow among the nodes. In this setting a document is typically analyzed in different
processing nodes, and, even, the analysis stages each documents goes through can be exe-
cuted in parallel. The main characteristics of the implemented streaming pipeline are the
following:

• Following a streaming architecture approach, documents may arrive at any time into
the pipeline, and the NLP processing starts as soon as new documents appear.

• The computation is distributed, that is, different stages of the pipeline may be pro-
cessed on different machines.

• The pipeline has an unique entry point. Documents are sent to the pipeline using this
single entry point, and the distribution of the NLP processing among the machines
is done automatically.

• Likewise, the processed documents are left into a single output queue, which in turn
is used to populate the KnowledgeStore repository with new information.

• The pipeline is agnostic with regard of the NLP components. The only requirement to
integrate new NLP components is that of consuming and producing NAF documents.

• The topology —the definition of the NLP modules and its placement into the pipeline—
is described in a declarative way, and thus easily modified.

• The pipeline allows the processing of non linear topologies. Whenever two or more
modules have no inter-dependencies, they can be executed in parallel for a single
document. We will describe non linear topologies in Section 4.4.

• The pipeline is easily scalable. It is very easy to include more computer power into
the pipeline by adding more machines. The pipeline will automatically rebalance
itself and include the new machines, which will be thus integrated into the pipeline
cluster.

4.1 Newsreader processing cluster

The NewsReader streaming pipeline is meant to be run and deployed into a cluster of
machines. As in the first version of the pipeline, the current implementation relies on

NewsReader: ICT-316404 February 3, 2015

System Design, Final 26/102

Figure 7: Main architecture of the NewsReader architecture for streaming processing.

virtual machines (VM) that contain all the required modules to analyze the documents.
The use of VMs is justified as they allow the installation of linguistic processors, which are
typically complex software packages that require many dependencies to be met to perform
their tasks. In NewsReader all the NLP modules, along with all the dependencies, are
installed into a VMs, which is then copied and deployed into clusters of computers. Using
VMs also allows the replication of the linguistic analysis results, which is a is very important
goal of the project. One LP module applied to a particular input text has to produce the
same output regardless the software framework (machine, operating system, etc.) where it
is installed. Therefore, special care has to be taken on guaranteeing that the same version of
the LP modules, along with the exact same dependencies, are deployed among machines.
Finally, virtualization is a widespread practice that increases the server utilization and
addresses the variety of dependencies and installation requirements. Besides, virtualization
is a ’de-facto’ standard on cloud computing solutions, which offer the possibility of installing
many copies of the virtual machines on commodity servers.

Figure 7 shows the general overview of the distributed pipeline. The pipeline architec-
ture consists of a number of VMs: one boss node and several worker nodes. We will see
both VM types in turn.

The boss node

The boss contains a document queue where input documents stored until the linguistic
processing begins. On a streaming computing scenario the pipeline can receive documents
at any time, with varying frequency rates. Sometimes the documents will arrive at a slow
pace and can be immediately consumed by the pipeline. However, on some occasions many
documents may arrive at the same time or within a tight timeframe, and the pipeline may
not be able to process them. The queue will streamline the documents according to the

NewsReader: ICT-316404 February 3, 2015

System Design, Final 27/102

arrival time, and they will wait there until the pipeline is ready for consuming them.
The boss node supervises the execution of the different stages of the processing pipeline.

Once a certain step of the pipeline ends, the boss decides which worker node to use for the
next pipeline stage. As a consequence, a document may be analyzed on different worker
nodes as it passes through the pipeline stages. This synchronization is automatically
performed by the Nimbus component of the STORM framework.

Because the documents may be analyzed on different nodes, it is very important that
the information among worker VMs can be shared quickly. In the first version of the
pipeline the document themselves where serialized into an XML string and passed from
one stage to the next in the form of a tuple. The second year of the pipeline uses a NoSQL
database instead, which is used to store all the intermediate results of the processing. The
database, called MongoDB, is also supervised by the boss node in the pipeline.

Finally, when the processing is over the boss node stores the processed NAF document
into and output queue. A process pulls those documents from the queue and populates the
KnowledgeStore with its contents. Once again, using a document queue allows streamlining
the documents until they can be consumed by the KnowledgeStore repository.

The boss node implements a REST service that accept documents to the processing
pipeline. For instance, the following command sends the document doc.xml to the pro-
cessing pipeline:

% curl --form "file=@doc.xml" http://BOSSIP:80/upload_file_to_queue.php

where BOSSIP is the IP address of the boss VM.

worker nodes and NLP modules

The cluster contains many worker nodes that actually perform the document processing.
A cluster will typically contain many worker nodes, therefore allowing many instances of
the NLP modules running in parallel. The worker nodes contain copies the same NLP
processors, which are synchronized from the boss node at worker creation time, and can
be regularly updated.

The NLP modules of the pipeline are developed and tested using a single VM hosted at
the EHU servers, called the IXA master node. The node contains all the NLP modules used
in the pipeline. New versions of the NLP modules, which typically fix bugs and implements
new features, are deployed and tested into the master node. The module integration into
the NewsReader pipeline is also tested, and scripts are provided to automatically check
the validity of the output produced by each module.

The distributed cluster contains scripts to synchronize the NLP modules from the IXA
master node. Instead of having all the worker nodes synchronizing with the master node,
the synchronization is performed in two steps:

1. The boss node synchronizes with IXA master and retrieves the last version of the
modules and topology specifications.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 28/102

<topology>

<cluster componentsBaseDir="/home/newsreader/components"/>

<module name="EHU-tok" runPath="EHU-tok.v21/run.sh"

input="raw" output="text"

procTime="1"/>

<module name="EHU-pos" runPath="EHU-pos.v21/run.sh"

input="text" output="terms"

procTime="2" source="EHU-tok"/>

<module name="EHU-nerc" runPath="EHU-nerc.v21/run.sh"

input="terms" output="entities"

procTime="11" source="EHU-pos"/>

<!-- ... -->

</topology>

Figure 8: Excerpt of the module specification document.

2. The worker nodes synchronize with the boss.

The distributed cluster will typically reside on a different location that the master.
Thus, this setting minimizes the internet traffic between physically distant nodes, while
maintaining the bulk of the traffic inside the machines on the same cluster.

Inside each worker the modules are managed using the Storm framework for streaming
computing, where each LP module is wrapped as a bolt inside the Storm topology (c.f.
Section 3.2). When a new tuple arrives, the bolt calls an external command sending the
tuple content to the standard input stream. The output of the LP module is received from
the standard output stream and passed to the next node in the topology. Each module
thus receives a NAF document with the (partially annotated) document and adds new
annotations into it. The tuples in our Storm topology consist of a document identifier,
which univocally identifies a NAF document as stored in the MongoDB database (c.f.
Section 4.1.2).

4.1.1 NLP processing topology

The NLP processing comprises 15 modules that perform all the required tasks for document
event extraction. Table 2 shows the NLP modules, along with the pre- and post requisites
of each of them, indicating also which NAF layers each one of them consume and produce
(in brackets).

The order in which the modules are executed is described by means of a Storm topology,
a graph of calculation that represents the steps a document has to go through to be
fully analyzed. The module information and the relative order of module execution is
declaratively described in an XML document, as shown in Figure 8. The root <topology>
element contains a <cluster> sub-element, that describes the root directory where all NLP
modules are installed, followed by one <module> element per NLP component.

Each <module> element has the following attributes:

NewsReader: ICT-316404 February 3, 2015

System Design, Final 29/102

Module Description Input (NAF layer) Output (NAF layer)

TOK Tokenizer, Sentence splitter Raw text (raw) Tokens (text)
POS POS tagger Tokens (text) Lemmas, POS tags (terms)
NERC Named Entity Recognition Lemmas, POS tags (terms) Named entities (entities)
Parse Constituency parser Raw text (raw) Parse trees (constituency)
Coref Coreference resolution Entities, Parse trees

(entities, constituency)
Coreference relations
(coreferences)

Opinion Opinion detection Entities, Parse trees
(entities, constituency)

Opinion holders (opinions)

WSD-ukb Word Sense Disambiguation Lemmas, POS tags (terms) Synsets (terms)
WSD-ims Word Sense Disambiguation Lemmas, POS tags (terms) Synsets (terms)

NED Named Entity Disambiguation Tokens, Lemmas, Entities
(text, terms, entities)

Disambiguated entities
(entities)

SRL Dependency parsing, Semantic
Role Labeling

Lemmas, POS tags (terms) Dependencies, Semantic Roles
(deps, srl)

time Time expressions Lemmas, Entities, Parse
trees (terms, entities,

constituency)

Time expressions
(timeExpressions)

eCoref Event coreference Lemmas, Semantic roles
(terms, srl)

Event coreferences
(coreferences)

tempRel Temporal relations Lemmas, Entitites, Parse trees,
Coreferences, Semantic roles,
Time expressions (terms,
entities, constituency,

coreferences, srl,

timeExpressions)

Temporal relations
(temporalRelations)

causalRel Causal relations Lemmas, Entitites, Parse
trees, Coreferences, Seman-
tic roles, Time expressions,
Temporal relations (terms,
entities, constituency,

coreferences, srl,

timeExpressions,

temporalRelations)

Causal relations
(causalRelations)

Fact Factuality Lemmas (terms) Factuality indications
(factualityLayer)

Table 2: LP modules of the NewsReader pipeline, with the pre- and post-requisites.

• name: the module name.

• runPath: the path relative to componentsBaseDir of the module executable.

• input: the NAF layer(s) that the module consumes.

• output: the NAF layer(s) that the module produces.

• procTime: the relative percentage of processing time that this particular module
spends.

• source: the previous module in the pipeline. The first module in the pipeline has
no source attribute.

The topology is fully specified by following the parent chain as specified by the source

attribute of each module. The topology builder, which loads and executes a topology into
the cluster, reads the modules specification document and creates a computation graph

NewsReader: ICT-316404 February 3, 2015

System Design, Final 30/102

Figure 9: MongoDB integration.

which follows the required order. It also checks that the topology is well formed, and that
the graph has no cycles.

The procTime attribute describes the relative time this module spends when analyzing
the document. The value is used for tuning the pipeline and specify how many copies of a
particular module will be executed in parallel. The main idea is that the most demanding
modules, according to the processing time, are the best candidates to be replicated, so that
many instances are executed in parallel. This value is of course unknown beforehand; in
our case, we have executed a version of the pipeline with one single copy for each module
over a single set of documents, and we have measured the elapsed time spent on each
module. This time has been used to fill the procTime attribute of the modules.

The number of instances for each module is calculated according to the following for-
mula:

p =
t ·N − 1

T
+ 1 (1)

where t is the is the percentage of elapsed time of the module (the procTime attribute),
T is the maximum processing time percentage in the pipeline and N is the number of worker
nodes.

4.1.2 MongoDB integration

In the distributed architecture documents may be analyzed on several worker nodes as they
pass through the different stages of the pipeline and, as a consequence, partially analyzed
NAF documents have to be shared among workers. We use a NoSQL MongoDB database
to store the partially annotated NAF documents, so that the impact of sharing the NAFs
is minimized.

MongoDB is a document oriented NoSQL database. It is schema free and contains
Databases, Collections and Documents. We store all NAF documents into a collection,

NewsReader: ICT-316404 February 3, 2015

System Design, Final 31/102

and each specific NAF layer is stored as a MongoDB document in the collection. We
also create two separate collections, one for storing the NAF header metadata and one for
storing the processing logs.

Figure 9 depicts the integration of MongoDB into the NLP components. Each NLP
component is wrapped inside a Storm bolt which consumes and produces messages in form
of tuples. In our case, the tuples consist in a NAF document identifier, which unequivocally
identifies a partially annotated NAF as stored in the MongoDB database. The bolt also
needs the module specification as explained in Section 4.1.1, so that it knows which NAF
layer the underlying NLP module consumes and produces.

The bolt node queries the MongoDB database and re-creates a subset of the NAF
document by retrieving just the NAF layers (and its dependencies) required by the module.
The NAF document is then sent to the analysis engine, which produces new annotations
layers or modifies previous ones. The new annotations are then stored again into MongoDB,
and the newly created NAF document identifier is passed to the next stage of the processing
pipeline. Note that in this setting the NLP modules receive only the minimal information
needed by them to perform their work. In other words, no time is spent in parsing large
NAF layers that are not required by the NLP modules.

Structure of MongoDB database In this section we will briefly describe the internal
structure of the MongoDB database as used in the distributed pipeline. We designed
the database structure so that the most frequent database operations can be performed
as efficient as possible. The main requisite for the database organization is thus that of
allowing quick access to a large number of annotated NAF documents.

The main information unit in MongoDB is the document. Documents are stored in
BSON format, a format similar to JSON. Documents are grouped into collections, which
are, loosely speaking, similar to tables in relational databases. MongoDB can deal with
many databases, each one comprised by many collections.

We store each NAF annotation layer into a separate MongoDB collection, and within
the collection each MongoDB document corresponds to a unique NAF document. That is,
the database contains as many collections as NAF layers, and within each collection there
are as many MongoDB documents as NAF documents. Besides, we allow the possibility of
storing partial documents into MongoDB; for instance, we can split a NAF document into
many parts (e.g., paragraphs or sentences) and store each piece into a separate MongoDB
document. Figure 10 shows the organization of NAF documents into MongoDB collections
and documents.

Each MongoDB document has the following attributes:

• id: this is a mandatory attribute, the document identifier. We create the id value
by concatenating the original document ID, the paragraph number and the sentence
number.

• doc id: This is the unique identifier of the original document.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 32/102

Figure 10: Structure of the MongoDB database.

• annotations: This attribute contains a list of MongoDB subdocuments, each of them
describing a NAF annotation. The type of annotation depends on the collection it
belongs.

Storing NAF documents into MongoDB requires representing the NAF content (an
XML document) in BSON, a JSON dialect natively used in MongoDB. The main rule is
to use key-value attributes and basic data types like strings or numbers to represent the
XML attributes, and BSON objects to map XML elements. Cross layer references in NAF
are represented by a list of string elements, each element describing the identifier of the
target element.

As with any other database management system, handling indices correctly is essential
to perform efficient queries. As mentioned before, this database will be part of a distributed
system to process big amount of text documents. Being the performance one of the most
important aspects of the system, appropriate indices are required to query the database
efficiently. An important feature of our system is that there is only one type of read query,
in which all the annotations of a specific layer of a specific NAF document are retrieved.
Taking into account that the required information is always found in a single MongoDB
document, we only need to know its identifier. Please notice that the layer name is not an
attribute of a MongoDB document, but it defines the collection into which the document
is found. Therefore, the only thing we need to perform the queries efficiently is to index
the id field of the database. Similarly, our system only performs one kind of write query.
Each module of the processing pipeline writes a full layer of a NAF document in a database
document.

With this structure, we avoid two potential problems of inappropriate MongoDB de-
signs. One of them is the document growth. If the MongoDB documents are updated
and they exceed the allocated space, MongoDB will relocate the document on disk. We
organize the documents in a way that they won’t be changed over the time. The other

NewsReader: ICT-316404 February 3, 2015

System Design, Final 33/102

important thing is the atomicity of operations. In MongoDB, operations are atomic at
document level. Thus, we keep all the writes atomic writing one single document at a
time.

4.1.3 VM from scratch

We have developed a set of scripts with the aim of automatically create a fully working
cluster for distributed NLP processing. We call these scripts “VM from scratch”, as they
create and configure the required virtual machines. The scripts are in a github repository,
at this address:

https://github.com/ixa-ehu/vmc-from-scratch

Creating a cluster using the scripts involves three main steps:

1. Create a basic cluster with the boss node and one worker node.

2. Make as many copies as required of the worker node.

3. Deploy the worker copies among different hosts and run the cluster.

The full documentation of the “VM from scratch” scripts are described in appendix C.
Now we will just depict the main steps to create a cluster using the scripts:

Create a basic cluster

The first step is to create the basic cluster using the create basic cluster.pl script.
The script will create two VM images, one for the boss node and one for the first worker
node (called workervm1 in the example). It is executed as follows:

% sudo create_basic_cluster.pl --boss-ip 192.168.122.111 --boss-name bossvm \\

--worker-ip 192.168.122.112 --worker-name workervm1

The script needs some parameters, such as the IP addresses and host names of the boss
and first worker nodes.

Once the first nodes are created, one need to log into the boss VM and retrieve all
the software into the boss and worker node (including the NLP processors from the IXA
master node). This is automatically done using the /root/init system.sh script located
at the boss node.

When the scripts finalizes the basic cluster is finally created and configured, and can be
used to start analyzing documents. However, it does not make much sense to use a cluster
with a single worker node. Therefore, the next step is to create the required copies of the
worker VMs, using the ./cp worker.pl script. This script created as many copies of the
worker node as needed, which are integrated into the processing cluster.

The last step is to login into the boss node and load a topology to start analyzing docu-
ments. The topology loader needs a topology definition as defined in Section 4.1.1 and also

NewsReader: ICT-316404 February 3, 2015

System Design, Final 34/102

the number of worker nodes of the cluster. This number is used to create many instances
of the NLP modules in the topology, so that effective parallel execution is achieved.

It is worth noting that more worker nodes can be added to the topology at any moment.
For this, just create a new worker using the cp worker.pl script, and then login to the
boss node and run a rebalance command, which will include the newly created worker when
deploying the NLP modules among machines.

4.2 Experiments

This section describes a series of experiments made within the project to test the effective-
ness of the distributed cluster when analyzing documents. We have tested the cluster on
different settings and have measured the performance gain obtained by parallelizing the
processing on each of them.

The main goal of the experiments is to assess the suitability of the NewsReader dis-
tributed pipeline when processing large quantities of documents in a reasonable time. In
particular, we want to answer to the following research questions:

• How does the distributed architecture perform in a batch and streaming settings?

• What is the gain of using non linear topologies?

The distributed pipeline presented in this Section is focused to streaming scenarios, but
it can also be used for batch processing nonetheless. If we want to analyze a large batch of
documents, we can send them all to the input queue and the documents will be produced
by the analyzing pipeline in a batch fashion. The first question focuses on analyzing the
architecture behavior on both settings (streaming and batch) so that we can learn which
configuration is best for each case.

The second question focuses on measuring the gain of using non linear topologies for
both streaming and batch scenarios. As we will see, the distributed pipeline allows the
definition of non linear topologies, where two or more modules can process the same docu-
ment at the same time. We will test the use of non linear topologies and measure its main
benefits.

Finally, the third question focuses on the overhead (or gain) that certain architectural
decisions pose on the overall system performance. In particular, we want to measure the
impact of the MongoDB and Storm systems in the system.

The next sections will analyze these aspects in turn.

4.3 Batch and Streaming Processing

We first tried the topology on a batch setting. For this, we selected a set of 100 documents
and sent them to a cluster comprising 6 different workers. We tried several alternatives,
regarding the cluster parameters:

• Baseline: a single instance of each NLP module.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 35/102

Setting Elapsed time (min) Gain
Baseline 260.67 –
ALL6 81 +69.74%
SRL6 68.05 +74.58%
p6 73.22 +72.65%
MONO 55.3 +79.34%

Table 3: Processing time for a batch of 100 documents on a cluster comprising 6 worker
nodes.

• ALL6: 6 instances of each module.

• SRL6: 6 instances of the SRL module; the rest of modules have one single instance.
We chose to parallelize the SRL module because it is the most demanding module
regarding processing time.

• p6: we calculated the number of instances for each module according to equation
(1)7.

• MONO: this setting mimics the monolithic approach taken in the first year of the
project. In this setting each document is wholly analyzed on a single worker node,
following a pipeline architecture. Note that this setting corresponds to having 6
instances of each module, but at any time there is only one module being executed
in each worker node.

Table 3 shows the elapsed times for the 100 documents on the different settings. With
no parallelization the documents need circa 4 hours and a half to be wholly analyzed.
The table shows that creating many instances of the most demanding module (SRL6) is
preferable than having many instances for all modules (ALL6). This result indicates that
in the ALL6 setting the NLP modules are competing to obtain CPU cycles on each worker
node, incurring a overall penalty in performance. Using the equation to calculate module
instances alleviates this problem, but it is still 2 percentual points worse than the SRL6

setting, as shown in the table.
All in all, Table 3 clearly shows that the maximum gain is obtained by following the

MONO setting for batch processing. In this setting the CPUS of the nodes are always
working, and therefore there is small room for improvement by using a distributed archi-
tecture among machines. In fact, the results show that MONO represents an upper-bound
to the overall elapsed time in the processing pipeline, when following a batch processing
scenario.

With this results at hand, we processed a two batches of documents comprising 2000
and 1000 documents of medium size, respectively. The latter batch is a subset of the
former. We used a cluster comprising 10 worker nodes under the MONO setting.

7Page 30.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 36/102

Setting Docs Elapsed time Throughput Proc. time Latency (doc/sent/token)

Batch 2,000 1819.47 1.10 15130.78 7.14 / 0.21 / 8.40×10−3

Batch 1,000 719.4 1.39 6519.12 6.66 / 0.18 / 7.48×10−3

Table 4: Statistic for batch processing. Throughput measures the ratio between the number
of documents and the elapsed time.

We use two traditional metrics to judge the extent to which the parallelization is
achieved: latency and throughput. The latency is the time taken to process an indi-
vidual data set (document, sentence, word), while the throughput is the aggregate rate
at which the data sets are processed and is calculated as the ratio between the number
of documents and the total time spent analyzing them (elapsed time). Note that since
multiple documents may be pipelined or processed in parallel, latency and throughput are
not directly related.

Table 4 shows the elapsed times and latencies for the document batches, including the
elapsed time, as well as the processing time, i.e., the sum of the times spent by each module
and document. Documents have an average latency of 7.14 minutes to be fully analyzed
although some documents caused some modules to spend a very large amount of time (the
maximum time needed was 67.83 minutes).

Processing 2000 documents on a single node would require more than 10 days (5 days
for 1000 documents); using the cluster, this elapsing time falls to 20 hours (resp. 10 hours),
that is, we achieve a parallelism ratio of 8.5. One would expect a parallelism ratio of 10,
as we have this number of nodes working on parallel. However, there are two important
factors that determine not reaching to the maximum ratio:

• The last documents do not finalize at the same time in the machines. Many worker
nodes remain on an idle state until the last document(s) of the batch is analyzed. If
those last documents are large, a drop in the parallelism ratio occurs.

• The input documents have to be distributed into ten partitions of the input queue
before the computation begins. However, this partitioning is done randomly and
regardless of the size of the documents. As a consequence, some partitions contain
many big documents, while some others contain only small documents. A particular
worker node pulls documents from a single partition, and therefore there could be
idle some nodes while some others have still many documents to consume.

The last factor is certainly an implementation restriction of the software used to im-
plement the input queue. The results of this experiments clearly suggest that we need to
test alternative software packages for implementing the queue.

Next, we want to try the distributed pipeline on a streaming computing scenario. In
this setting, documents arrive to the processing pipeline at any time, and they have to
be analyzed as fast as possible. We have implemented a Poisson process that emulates
the arriving of documents randomly within a time frame. A Poisson process is useful to
emulate events which occur individually at random moments, but which tend to occur

NewsReader: ICT-316404 February 3, 2015

System Design, Final 37/102

Figure 11: Non linear topology.

at an average rate when viewed as a group. It has one main parameter, called the rate
parameter, that indicates the average rate of events (documents) per unit of time. The
batch experiment suggests that analyzing a document needs between one and one and a
half minutes on average, and therefore we set the rate parameter to 1000 documents within
a time frame of 33 hours.

Setting Docs Proc. time Latency (doc/sent/token)

Linear 1,000 4620.90 5.00 / 0.14 / 5.78×10−3

Non linear 1,000 5421.33 2.78 / 0.08 / 3.13×10−3

Table 5: Statistic for streaming processing for linear and non linear topologies.

The first line of Table 5 shows the processing time and latencies for the same set of 1000
documents used in the batch processing. This table omits the elapsed time and throughput
measures, as we intentionally maintain the cluster idle when the queue is empty and waiting
to the arrival of new documents. Comparing to the batch scenario, the documents need less
time to be processed. This can be explained by the fact that in a batch processing scenario
the CPUs on each node are always at a maximum processing rate, and therefore some
modules suffer a penalty in terms of page faults and context switching. As a consequence,
the overall latency is slightly better in a streaming scenario. We expected no significant gain
in latency because the modules are executed on a following a linear pipeline architecture
and thus the elapsed time required for a single document is more or less the same on both
settings.

4.4 Non linear topologies

The distributed pipeline offers the choice of implementing non linear topologies. Linear
topology executes all the processing steps following a pipeline architecture, i.e., one mod-
ule after another. In contrast, non-linear topologies allow many processing stages to be

NewsReader: ICT-316404 February 3, 2015

System Design, Final 38/102

executed at the same time for a single document. By implementing non-linear topologies
we expect that the overall document latency to decrease, as many processing stages are
executed at the same time.

Two or more modules may be executed in a non-linear fashion whenever there is no
dependency between them. For instance, according to the pre-requisites of each module
shown in Table 2 one can see that the NERC and SRL modules can be executed non
linearly, as they both depend on the terms NAF layer. On the other side, both modules
have to be executed after POS, as the latter is the module which produces the terms layer.

Figure 11 depicts the non linear topology used in our experiments. The topology
is defined by following the dependency chain of the NLP modules described in Table 2.
Implementing non linear topologies require that modules can work with the required subsets
of the NAF document needed by the module. Fortunately, this is trivially accomplished
by using MongoDB to store intermediate NAF documents, as the wrappers retrieve only
the required NAF layers for a certain NLP module.

It makes little sense to run experiments of non linear topologies on a batch processing
scenario. As said before, in this setting the cluster nodes are always working at full capacity,
so we expect no overall gain by executing the NLP modules for a single document in parallel.
However, we expect a performance boost in latency when using non linear topologies on a
streaming processing scenario. When a document arrives, its processing can be distributed
among the idle machines of the cluster, and therefore the average time needed by each
document until it is fully analyzed should drop significantly. The second row of Table 5
confirms our intuition. Although the processing time using non linear topologies is higher,
the overall latency dropped almost to a half, that is, a document needs half the time to be
analyzed.

Looking at the figure 11, we can see that there can be up to 6 modules running in
parallel. Therefore, one would expect more than a 50% gain in the overall latency when
using non linear topologies. However, the time required by each NLP module is very
unbalanced. In fact, the SRL module takes almost the 60% of the overall processing time for
a document, and, therefore, it represents a bottleneck of the overall processing. Although
all other modules finish first, they have to wait to the SRL to end in order to complete
the document analysis. Note also that having many instances of the SRL module does
not alleviate this problem, as the module works linearly for each document. One possible
solution to this problem is to implement different granularities in the NLP modules, that
is, make the modules able to analyze fragments of documents such as sentences, paragraphs
or word contexts. This way, many instances of the same module can be applied in parallel
for a single document, thus reducing the overall latency. This is an option we want to
investigate further during the third year of the project.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 39/102

5 Batch architecture using Hadoop

The Storm architecture described in the previous section is particularly suitable for real
time processing. This is the architecture that is meant to process news articles as they
come in, analyze them, relate them to what is already known in the KnowledgeStore and
add new knowledge. However, there are many situations in which large batches of data
need to be processed and real time processing is not necessary. For instance, when we
fill the KnowledgeStore with information from news over the last several years to get
our background information for the news that is newly arriving, we are processing large
batches. The same applies in many practical cases, such as preparing data for Hackathons
or evaluations during the project. Even if we update news on a daily basis, this can be
handled by batch processing. Because of these scenarios, alternative approaches that can
be more efficient when processing batches are of interest to NewsReader.

A collaboration with SURFsara led to a proposal and implementation of a Hadoop
architecture that can efficiently process large batches of newspaper text with the News-
Reader tools. This alternative architecture (which makes use of the same NLP modules
and still uses the NAF representation to pass information between modules and represent
our output) has allowed us to use a significantly larger amount of data for the Hackathons
and user evaluation of the second project year (a total of 1.3 Million articles in the second
year compared to 63K in the first year). This section provides a brief introduction and
description of the setup.

5.1 Hadoop

Hadoop8 ([Venner et al., 2014; White, 2009]) is a framework that supports processing
of very large sets of data distributed across clusters. Hadoop can be used to partition
data and computation and scale from a single server to thousands of servers using simple
programming models. It furthermore has the advantages of being robust and fault tolerant
and running on commodity hardware. Disadvantages are that the APIs are implemented in
Java and there is no extensive support to run normal binaries. For the NewsReader pipeline,
a solution had to be designed and implemented that allows for modules programmed in
various languages to be combined.

5.2 Cascading

Placing a complex pipeline consisting of a variety of modules with different requirements
into the MapReduce framework ([Dean and Ghemawat, 2008], the processing part of
Hadoop) is not necessarily trivial. Cascading9 was used to facilitate this task. Cascading
is specifically designed to support complex workflows on Hadoop without diving into the
complexity of MapReduce jobs. The current Hadoop architecture creates a Java object
for each task in the pipeline. This object takes a path to the NLP module, a path to a

8http://hadoop.apache.org/
9http://www.cascading.org

NewsReader: ICT-316404 February 3, 2015

http://hadoop.apache.org/
http://www.cascading.org

System Design, Final 40/102

scratch directory and a NAF input file as its arguments.10 Any module that can be called
from the command-line taking standard input, a path to the module itself and a path to
a temporal or scratch directory and then produces a NAF file as standard output can be
integrated in the cascading architecture. The implementation includes a 10 minute time
out for each module to reduce lost time on files that lead to errors. In case of failure,
the latest produced NAF file is stored so that information obtained in previous processing
steps is not lost.

Most modules were adapted so that they could be integrated into the architecture in a
similar way as they are used independently or when integrated in Storm. The only excep-
tion is the module for named entity disambiguation which communicates with DBpedia.
Rather than starting up DBpedia every time the module was called, DBpedia was installed
on a separate server to which the module calls.

5.3 Scaling up news processing

At the time of processing the car dataset, SURFsara had 86 nodes, 8 cores, 64GB RAM
and 16TB disks available. Initial investigations on the performance of NLP modules in this
settings were carried out. Figure 12 illustrates how much time individual modules spent
on 500 documents from an initial test set. The figure shows that modules are generally
well behaved, with the occasional outlier.

Figure 12: Time individual NLP modules spent on processing documents

10This basic setup applies to most modules in the pipeline, some require additional settings.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 41/102

Based on the first evaluation results, we made an estimation of the requirements for
processing the news that comes in on a single day.

• LexisNexis estimation: approximately 1 million articles per day

• We need 170 seconds per document on average for 1 core with approximately 8GB
RAM

• Approximately 508 documents can be processed per core per day

• SURFsara has 680 cores on Hadoop (will be 1440): 350K to 730K documents per
day at SURFsara

• 50,000 core hours per million documents:

– We need 2100 cores for a day

– SURFsara can handle a day of news within 3 days (will be 1.5 days)11

– 1 computer will need 5 years

5.4 Processing the car data

The Hadoop architecture was used to process the 1.3 million articles about the car in-
dustry that are used during the Hackathon and user evaluation. Even though Hadoop is
specifically designed to help distribute jobs over several nodes, the size of the jobs sent
to Hadoop and particular settings can have an impact on the speed and efficiency of the
processing. In Hadoop, a job (in our case batch of data) is divided over several workers on
currently available nodes. Several programs can be run at the same time and Hadoop will
distribute the available nodes among them. Each node has several workers that carry out
the actual tasks. The load per worker can be defined as a setting when starting a task.
While processing the 1.3 million car articles, this was set to 10 - 20 items per worker.

While going through a set of serialized jobs, the next job starts as soon as the previous
job has finished. In our dataset, it may happen that the occasional long file or outlier in
processing time results in one or two workers still carrying out some tasks while the others
are done. This can result in idle nodes that are simply waiting for the job to finish on
other nodes. In order to eliminate this scenario, we use two parallel runs. If nodes are idle,
because a small part of the job in one run is not finished yet, these nodes can be taken up
by a job by the other run.

Processing this data has revealed several ways in which we may further improve ef-
ficiency and the overall process. The car data was processed at the Hadoop cluster of
SURFsara which has a rather conservative limit on the number of workers per node (only
4). We also used a cluster at the computer science department of VU University that
does not impose such restrictions and can handle twice as much data per node. Second,

11Provided the full Hadoop capacity can be used for this task.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 42/102

assigning 10-20 items per worker may not be the most optimal setting, but it proved to
be reliable and we decided to stick to it for completing the processing of these datasets.
Future experiments can provide further insight into what the best division is. Third, when
one of the workers fails due to excessive memory usage, the entire job fails. This happens
only occasionally and with a relatively low setting of number of items per worker, the
amount of data that is affected remain limited. Nevertheless, the setup should be fixed so
that only the document creating the problem fails and all other documents that happen
to be part of the same batch remain.

In the previous section, we calculated that SURFsara could handle 1 million news
items within 3 days. This estimation would hold under the assumption that no other
users are running jobs on the cluster. Processing the 1.3 million articles in this set took
approximately 11 days.

5.5 Future work and possible improvements

Despite the straight-forward implementation of the Hadoop architecture, it can currently
still be a hassle to update the pipeline or to add a new module. This is mainly due to
the fact that the NLP modules are not specifically designed to be run on Hadoop and
therefore some requirements Hadoop imposes are not respected. We therefore created a
protocol that outlines these requirements. Modules developed in the future should all
respect the requirements outlined in this protocol. We aim to revise existing modules as
much as possible, so that they too can easily be integrated in the cascading implementation
for NewsReader and other architectures in general. Furthermore, the settings presented
above (10-20 items per working) were used, because they quickly proved to be stable and
we wanted to make sure the data could be processed without difficulty. In addition to
removing the conservative limits set by SURFsara, we may gain in efficiency by further
optimizing the number of items per worker.

Figure 13: Comparison of time needed per module

Figure 13 reveals the time individual modules take on average. Just like already ob-

NewsReader: ICT-316404 February 3, 2015

System Design, Final 43/102

served in the Storm architecture, the semantic role labeling module is the most time con-
suming module in the pipeline. This can partially be explained by the complex language
model that has to be initiated each time the module is called. If modules are imple-
mented in Java, it is relatively straightforward to initiate a language module once for a
batch of data. However, most of our modules use Python implementations which means
that reimplementations of the software are required. It is therefore not feasible to address
this problem for all modules within the project. We do hope to address this issue for
modules that are already implemented in Java and this can be done relatively easily and
the semantic role labelling module for which this change would have the most significant
impact.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 44/102

NewsReader: ICT-316404 February 3, 2015

System Design, Final 45/102

6 Modeling Provenance and Attribution

Deliverable D2.1 [Beloki et al., 2014] provides a complete overview and motivation of the
representation formats we use for representing our linguistic analyses and the final output
in RDF. In this section, we describe the latest additions to these representations. In
particular, we describe the model we developed for representing provenance information.
The section is organized as follows. First, we will briefly outline what is understood by
provenance and explain the two kinds of provenance that need to be modeled. We then
provide an overview of the attribution values that are annotated in text and explain the
requirements for the model. Finally, we present the model that we will use to relate
attribution values to statements.

6.1 Provenance and Attribution

For several of NewsReader’s goals, it is important to know what the source of information
is. Users may want to compare perspectives from different sources, or they want to be
able to verify whether the analysis is correct. We distinguish between direct sources (the
paper, publisher or author of an article) and quoted sources (sources that are mentioned
in the text, e.g. According to Jerry Yang, President Dieter Zetsche says...). In this docu-
ment, we will consider the former sources (paper, publisher, author) as part of provenance
information. We will use the term attribution to refer to the latter (the quoted sources).

Provenance will be modeled using the PROV-O [Moreau et al., 2012]. The PROV-O
is specifically designed to model the provenance of data. It allows us to model the data,
the processes and agents involved in producing data. We will use PROV-O to model
all provenance related information coming from metadata (i.e. publisher, author of text),
but also to model information on NLP processing. Deliverable D2.1 describes provenance
modeling in NAF.

When texts mention a certain source, we will not use the PROV-DM to indicate this.
Though sources mentioned in text also indicate provenance of information, the processes,
data and roles of agents involved are different from those commonly modeled by PROV-O.
Moreover, there is a factor of uncertainty in the provenance assigned, because it is identified
by NLP analyses. Finally, source indications can introduce speech acts which are events
just like the ‘data’ they produce. Sources introduced in the text will therefore be modeled
using SEM+ [van Hage et al., 2011].

We can link sources modeled through SEM+ (a quoted source) to sources modeled in
PROV if we want to create complete overviews of perspectives or opinions from a specific
source (e.g. indicate both what is published by the NY Times and information other sources
say comes from the NY Times). There are, however, several possible ways of doing this.
They will be described in the coming subsections.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 46/102

6.2 Attribution annotations

This section provides a brief outline of the linguistic annotations that indicate attribution
values and are provided in our gold standard and the relevant output of NLP tools. The
annotation guidelines [Tonelli et al., 2014] specify three attribution related values and some
special cases. The annotations apply to events and are directly linked to an event mention.

The attribution related values are:

• Polarity (POSITIVE, NEGATIVE, UNDERSPECIFIED): is the event affirmed or
denied?

• Interpreted time (FUTURE, NON-FUTURE, UNDERSPECIFIED): does the event
take place in the future from the source’s point of view or not?

• Certainty (CERTAIN, PROBABLE, POSSIBLE, UNDERSPECIFIED)

In addition three “special cases” can be indicated:

• Part of a conditional if-clause

• Part of a conditional main clause

• A generic statement

For reasons of space and clarity, we will only address the general (non special) attribu-
tion values here. In addition, the following information is also provided:

• There is an opinion-mining module that can identify the source (opinion-holder),
target (the opinion) and the judgment (positive or negative opinion)

• The Semantic Role Labeling module and Predicate Matrix allow us to identify
FrameNet frames and roles. The Event-and-Situation Ontology distinguishes dif-
ferent kinds of attribution verbs (cognition, speech acts, etc).

We can use this output to link individual events to a specific source. If events are
included in an opinion’s target, the opinion holder is the source. If they are the ARG2
(using more generic propBank roles for reasons of generalization) of a so-called attribution
verb, the ARG1 is the source. Attribution verbs and identified opinions also provide
indications about the attribution values mentioned above (polarity, certainty, time), but
this will be taken into account in the interpretation of attribution.

The current attribution model with its three main properties is relatively simple. It
is likely that it will be extended in the future to provide more detailed information. To
avoid an ever increasing amount of triples indicating attribution that needs to be attached
to relations between events and other entities or event mentions (depending on the model
chosen), we define complex attribution values that can incorporate one or more attribution
properties. An overview of the current values is given in Figure 14. As we consider
more aspects of attribution, more values will be added. These complex values allow us to
represent all attribution related information in one triple.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 47/102

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix nwrontology: <http://www.newsreader-project.eu/ontologies/> .

nwrontology:polarityPOS a rdfs:property .

nwrontology:polarityNEG a rdfs:property .

nwrontology:attributionCERTAIN a rdfs.property .

nwrontology:attributionPROBABLE a rdfs:property .

nwrontology:attributionPOSSIBLE a rdfs:property .

nwrontology:tenseNONFUTURE a rdfs:property .

nwrontology:tenseFUTURE a rdfs:property .

nwrontology:attrPOSCERT rdfs:subPropertyOf nwrontology:polarityPOS .

nwrontology:attrPOSCERT rdfs:subPropertyOf nwrontology:attributionCERTAIN .

nwrontology:attrPOSPROB rdfs:subPropertyOf nwrontology:polarityPOS .

nwrontology:attrPOSPROB rdfs:subPropertyOf nwrontology:attributionPROBABLE .

nwrontology:attrPOSPOSS rdfs:subPropertyOf nwrontology:polarityPOS .

nwrontology:attrPOSPOSS rdfs:subPropertyOf nwrontology:attributionPOSSIBLE .

nwrontology:attrNEGCERT rdfs:subPropertyOf nwrontology:polarityNEG .

nwrontology:attrNEGCERT rdfs:subPropertyOf nwrontology:attributionCERTAIN .

nwrontology:attrNEGPROB rdfs:subPropertyOf nwrontology:polarityNEG .

nwrontology:attrNEGPROB rdfs:subPropertyOf nwrontology:attributionPROBABLE .

nwrontology:attrNEGPOSS rdfs:subPropertyOf nwrontology:polarityNEG .

nwrontology:attrNEGPOSS rdfs:subPropertyOf nwrontology:attributionPOSSIBLE .

nwrontology:attrCERTNF rdfs:subPropertyOf nwrontology:polarityNONFUTURE .

nwrontology:attrCERTNF rdfs:subPropertyOf nwrontology:attributionCERTAIN .

nwrontology:attrPROBNF rdfs:subPropertyOf nwrontology:polarityNONFUTURE .

nwrontology:attrPROBNF rdfs:subPropertyOf nwrontology:attributionPROBABLE .

nwrontology:attrPOSSNF rdfs:subPropertyOf nwrontology:polarityNONFUTURE .

nwrontology:attrPOSSNF rdfs:subPropertyOf nwrontology:attributionPOSSIBLE .

nwrontology:attrCERTF rdfs:subPropertyOf nwrontology:polarityFUTURE .

nwrontology:attrCERTF rdfs:subPropertyOf nwrontology:attributionCERTAIN .

nwrontology:attrPROBF rdfs:subPropertyOf nwrontology:polarityFUTURE .

nwrontology:attrPROBF rdfs:subPropertyOf nwrontology:attributionPROBABLE .

nwrontology:attrPOSSF rdfs:subPropertyOf nwrontology:polarityFUTURE .

nwrontology:attrPOSSF rdfs:subPropertyOf nwrontology:attributionPOSSIBLE .

nwrontology:attrPOSNF rdfs:subPropertyOf nwrontology:polarityPOS .

nwrontology:attrPOSNF rdfs:subPropertyOf nwrontology:attributionNONFUTURE .

nwrontology:attrPOSF rdfs:subPropertyOf nwrontology:polarityPOS .

nwrontology:attrPOSF rdfs:subPropertyOf nwrontology:attributionFUTURE .

nwrontology:attrNEGNF rdfs:subPropertyOf nwrontology:polarityNEG .

nwrontology:attrNEGNF rdfs:subPropertyOf nwrontology:attributionNONFUTURE .

nwrontology:attrNEGF rdfs:subPropertyOf nwrontology:polarityNEG .

nwrontology:attrNEGF rdfs:subPropertyOf nwrontology:attributionFUTURE .

nwrontology:attrPOSCERTNF rdfs:subPropertyOf nwrontology:attrPOSCERT .

nwrontology:attrPOSCERTNF rdfs:subPropertyOf nwrontology:attrPOSNF .

nwrontology:attrPOSPROBNF rdfs:subPropertyOf nwrontology:attrPOSPROB .

nwrontology:attrPOSPROBNF rdfs:subPropertyOf nwrontology:attrPOSNF .

nwrontology:attrPOSPOSSNF rdfs:subPropertyOf nwrontology:attrPOSPOSS .

nwrontology:attrPOSPOSSNF rdfs:subPropertyOf nwrontology:attrPOSNF .

nwrontology:attrNEGCERTNF rdfs:subPropertyOf nwrontology:attrNEGCERT .

nwrontology:attrNEGCERTNF rdfs:subPropertyOf nwrontology:attrNEGNF .

nwrontology:attrNEGPROBNF rdfs:subPropertyOf nwrontology:attrNEGPROB .

nwrontology:attrNEGPROBNF rdfs:subPropertyOf nwrontology:attrNEGNF .

nwrontology:attrNEGPOSSNF rdfs:subPropertyOf nwrontology:attrNEG POSS .

nwrontology:attrNEGPOSSNF rdfs:subPropertyOf nwrontology:attrNEGNF .

nwrontology:attrPOSCERTF rdfs:subPropertyOf nwrontology:attrPOSCERT .

nwrontology:attrPOSCERTF rdfs:subPropertyOf nwrontology:attrPOSF .

nwrontology:attrPOSPROBF rdfs:subPropertyOf nwrontology:attrPOSPROB .

nwrontology:attrPOSPROBF rdfs:subPropertyOf nwrontology:attrPOSF .

nwrontology:attrPOSPOSSF rdfs:subPropertyOf nwrontology:attrPOSPOSS .

nwrontology:attrPOSPOSSF rdfs:subPropertyOf nwrontology:attrPOSF .

nwrontology:attrNEGCERTF rdfs:subPropertyOf nwrontology:attrNEGCERT .

nwrontology:attrNEGCERTF rdfs:subPropertyOf nwrontology:attrNEGF .

nwrontology:attrNEGPROBF rdfs:subPropertyOf nwrontology:attrNEGPROB .

nwrontology:attrNEGPROBF rdfs:subPropertyOf nwrontology:attrNEGF .

nwrontology:attrNEGPOSSF rdfs:subPropertyOf nwrontology:attrNEG POSS .

nwrontology:attrNEGPOSSF rdfs:subPropertyOf nwrontology:attrNEGF .

Figure 14: Basic overview of properties that model attribution

6.3 Proposed attribution models

We have explored several ways to model attribution values in RDF. The first proposals
we considered assume that attribution values are modeled on the level of instances. They
provide an indication whether something happened or will happen or not and how certain

NewsReader: ICT-316404 February 3, 2015

System Design, Final 48/102

this is according to a specific source. Attribution values can also be related to mentions.
In this case, the attribution values of the actual event can be identified by retrieving where
the event was mentioned and what attribution values were related to these mentions. We
will follow the latter option in NewsReader. We will first outline the requirements, then we
describe how we model attribution on a mention level. A full overview of the alternative
proposals modeling attribution on the instance level is provided in Appendix B.

6.3.1 Requirements

The model needs to be able to account for several phenomena. First, certain aspects of an
event may have different attribution values as others. The following examples illustrates
this:

(1) Willem will not be at the NewsReader meeting in October.

(2) Thomas will be there.

In this example, there refers to the meeting. We thus have one event (the meeting), but
two attribution values, namely nwrontology:attrPOSCERTF and nwrontology:attrNEGCERTF.
We need to know what exactly is confirmed about this meeting (Thomas’s presence) and
what is denied (Willem’s presence). It nevertheless may also happen that attribution val-
ues are assigned to an entire event (e.g. the NewsReader meeting was cancelled assigns
certain negative polarity to the NewsReader meeting). The model must be able to handle
both these scenarios.

Second, the model needs to be able to deal with the scope of attribution values. Nega-
tion and uncertainty typically only have scope over a specific syntactic relation or, on the
interpretation level, over a specific relation between an event and another entity. Consider
the following two examples:

(3) Anna believes that Kim did not kill John with a knife.

(4) Linda says Sandy did not kill Harry.

In sentence (3), the default interpretation would be that Anna believes that Kim killed
Harry, but that it was not with a knife. In the case of (3), the negation can either be about
Sandy being the killer (but Harry was killed), about the event being killing (but Sandy
did do something to Harry, e.g. hurt him or (try to) rescue him), or about it being Harry
who was killed (but Sandy did kill someone else). Context is needed to determine which
part of the statement is being denied, but it is highly unlikely that the negation concerns
more than one of the components or especially all three. We should be able to model the
scope of the negation, if known, or to be able to indicate underspecified negation if it is
not clear where the negation applies to.

Finally, different perspectives may be given on the same triple. A specific perspective
is always connected to the source that expresses the perspective. The model should be
able to handle this.

The following properties and requirements guided the design of the model proposed
here:

NewsReader: ICT-316404 February 3, 2015

System Design, Final 49/102

:NGsell {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev17Sell a sem:Event, fn:Commerce_sell , eso:Selling .

}

:NGsell_r1 {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev17Sell fn:Commerce_sell@Seller dbp:resource/Chrysler .

}

:NGsell_r2 {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev17Sell

fn:Commerce_sell@Goods nwr:data/cars/entities/Liberty_SUVs .

}

:NGexpect {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev16Expect a sem:Event, fn:Expectation .

}

:NGexpect_r1 {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev16Expect fn:Expectation@Cognizer dbp:resource/Chrysler

.

}

:NGexpect_r2 {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev16Expect sem:hasTarget :NGsell .

}

:NGsay {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev11Say a fn:Statement .

}

:NGsay_r1 {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev11Say

fn:Statement@Speaker dbp:resource/Dieter_Zetsche .

}

:NGsay_r3 {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev11Say

sem:hasPlace nwr:/data/cars/entities/DaimlerChrysler_Innovation_Symposium .

}

:NGsay_r2 {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev11Say sem:hasTarget :NGexpect .

}

:NGsymposium {

nwr:/data/cars/entities/DaimlerChrysler_Innovation_Symposium sem:hasPlace dbp:resource/New_York_City .

}

:NGsay2 {

nwr:madeupexampletext.xml#ev132Say a fn:Statement .

}

:NGsay2_r1 {

nwr:madeupexampletext.xml#ev132Say fn:Statement@Speaker dbp:resource/Manfred_Bischoff .

}

:NGsay2_r2 {

nwr:madeupexampletext.xml#ev132Say sem:hasTarget :NGsell .

}

Figure 15: Triples modeling instances of basic example sentences

NewsReader: ICT-316404 February 3, 2015

System Design, Final 50/102

1. Statements need to be related to the entities making them.

2. Triples are derived from documents (through NLP analyses) and the relation to this
document is indicated through gaf:denotedBy

3. There can be asymmetry between event and participation relations: we want “pred-
icate” both on event instances and on event participation (as well as location, time,
etc.)

4. There may be news reporting that a person changed his or her mind (e.g. Initially
Anna said that Kim killed John, but later she stated that Kim could not have done
it.)

The model will be illustrated using the example sentence:

(5) Chrysler expects to sell 5,000 diesel Liberty SUVs, President Dieter Zetsche says
at a DaimlerChrysler Innovation Symposium in New York.

In order to illustrate how different perspectives are expressed, we also represent the
following made up sentence, next to the sentence above.

(6) Manfred Bischoff said that Chrysler will probably not sell 5,000 diesel Liberty
SUVs.

Figure 35 provides the simplified RDF representation including all relations between
events and entities of the two example sentences after a correct analysis. This illustration
only represents the instances. Relations between instance and mention are represented in
Figure 16.

6.4 Modeling attribution

As mentioned above, we will model attribution on the level of mentions. The instance level
represents events, other entities and the relations between them. Different statements can
be made about these events and relations: one person may claim something is definitely
true, where someone else claims that it is false. We even may have the same person making
different statements concerning the truth of an event or his role in it. Given our assumption
that we should not aim to identify what is true or not, but merely what different sources
say is true or not, attribution is inherently related to statements. Modeling attribution on
a mention level captures this intuition.

In the example sentences, two statements are being made about Chrysler selling 5,000
SUVs. One statement expresses that Chrysler expects to do so, the other that they will
probably not. We thus have Chrysler having a certain expectation, which is stated by
Dieter Zetsche. Manfred Bischoff makes the statement about the same sell event with
other attribution values. Recall that the links between instances to their mentions are
given in Figure 16. Figure 17 presents the triples that model attribution values for the
example sentences.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 51/102

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev17Sell

gaf:denotedBy nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_pr_17 .

:NGsell_r1 gaf:denotedBy nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_pr_17_r1 .

:NGsell_r2 gaf:denotedBy nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_pr_17_r2 .

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev16Expect

gaf:denotedBy nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_pr_16 .

:NGexpect_r1 gaf:denotedBy nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_pr_16_r1 .

:NGexpect_r2 gaf:denotedBy nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_pr_16_r2 .

dbp:resource/Chrysler gaf:denotedBy nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_t_243 .

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev11Say

gaf:denotedBy nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_pr_11 .

:NGsay_r1 gaf:denotedBy nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_pr_11_r1 .

:NGsay_r2 gaf:denotedBy nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_pr_11_r2 .

dbp:resource/Dieter_Zetsche gaf:denotedBy nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_t_252 .

nwr:madeupexampletext.xml#ev132Say gaf:denotedBy nwr:madeupexampletext.naf#mention_pr_132 .

:NGsay2_r1 gaf:denotedBy nwr:madeupexampletext.naf#mention_pr_132_r1 .

:NGsay2_r1 gaf:denotedBy nwr:madeupexampletext.naf#mention_pr_132_r2 .

dbp:resource/Manfred_Bischoff gaf:denotedBy nwr:madeupexampletext.naf#mention_t_2045 .

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev17Sell

gaf:denotedBy nwr:madeupexampletext.naf#mention_pr_133 .

:NGsell_r1 gaf:denotedBy nwr:madeupexampletext.naf#mention_pr_133_r1 .

:NGsell_r2 gaf:denotedBy nwr:madeupexampletext.naf#mention_pr_133_r2 .

Figure 16: Links between instances and mentions basic examples

By placing statements that represent attribution coming from the same source, we can
straightforwardly model who or what the source of the statement and its attribution is.
The relations to the source are given in Figure 18.

An overview of how both attribution values and sources are modeled for our example
sentences is given in Figure 19.

The examples and picture above illustrate that the model can capture alternative points
of view regarding the attribution of the same event. It is also straightforward to extract all
view points expressed by a specific source. When the scope of assigned attribution values
is known, this can easily be modeled by assigning different attribution values to individual
roles in an event. The case of underspecified scope as in the example Sandy does not believe
Kim killed Harry can currently not be modeled. Recall that, without context, we do not
know whether Sandy believes Harry was killed, but not by Kim, whether Sandy believes
Kim killed someone else or whether Sandy believes Kim did not kill Harry, because he did

NewsReader: ICT-316404 February 3, 2015

System Design, Final 52/102

not end up dead, etc. In this case, we would ideally be able to model that according to
Sandy something is probably not true, but we do not know what part of the statement
this applies to exactly. We are currently working on a solution to handle such cases.

:NGChryslerAtt {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_pr_17 nwr:hasAttribution nwrontology:attrPOSPROBF

.

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_pr_17_r1

nwr:hasAttribution nwrontology:attrPOSPROBF .

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_pr_17_r2

nwr:hasAttribution nwrontology:attrPOSPROBF .

}

:NGZetscheAtt {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_pr_16 nwr:hasAttribution nwrontology:attrPOSCERTNF

.

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_pr_16_r1

nwr:hasAttribution nwrontology:attrPOSCERTNF .

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_pr_16_r2

nwr:hasAttribution nwrontology:attrPOSCERTNF .

:NGChryslerAtt nwr:hasAttribution nwrontology:attrPOSCERTNF .

}

:NGBischoffAtt {

nwr:madeupexampletext.naf#mention_pr_133 nwr:hasAttribution nwrontology:attrNEGPROPF .

nwr:madeupexampletext.naf#mention_pr_133_r1 nwr:hasAttribution nwrontology:attrNEGPROPF .

nwr:madeupexampletext.naf#mention_pr_133_r2 nwr:hasAttribution nwrontology:attrNEGPROPF .

}

:NGWAWAtt {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_pr_11 nwr:hasAttribution nwrontology:attrPOSCERTNF

.

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_pr_11_r1

nwr:hasAttribution nwrontology:attrPOSCERTNF .

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.naf#mention_pr_11_r2

nwr:hasAttribution nwrontology:attrPOSCERTNF .

nwr:madeupexampletext.naf#mention_pr_132 nwr:hasAttribution nwrontology:attrPOSCERTNF .

nwr:madeupexampletext.naf#mention_pr_132_r1 nwr:hasAttribution nwrontology:attrPOSCERTNF .

nwr:madeupexampletext.naf#mention_pr_132_r2 nwr:hasAttribution nwrontology:attrPOSCERTNF .

}

Figure 17: Triples that model attribution

NewsReader: ICT-316404 February 3, 2015

System Design, Final 53/102

:NGZetsche prov:wasAttributedTo dbpedia:Dieter_Zetsche .

:NGChrysler prov:wasAttributedTo dbpedia:Chrysler .

:NGBischoff prov:wasAttributedTo dbpedia:Manfred_Bischoff .

:NGWAWAtt prov:wasAttributedTo dbpedia:Ward’s_Auto_World .

Figure 18: Triples that model attribution

Figure 19: Illustration of different attribution values and perspectives applied by various
sources

NewsReader: ICT-316404 February 3, 2015

System Design, Final 54/102

NewsReader: ICT-316404 February 3, 2015

System Design, Final 55/102

7 Conversion of NAF to SEM

The processing of text to RDF roughly consists of 3 phases:

1. Natural language processing to generate the NAF layers

2. Cross-document event coreference to convert NAF to RDF

3. Populate the KnowledgeStore with NAF and RDF

In this section, we describe the second phase after the NLP-NAF has been generated. We
first describe the architecture of this phase and next the performance of processing 1.3M
NAF files for the automotive industry.

7.1 Architecture for processing NAF to SEM

The NAF2SEM processing results in RDF-TRiG files that contain instances of events,
entities and owl:DateTimeDescriptions as well as SEM relations between events, their
participants, places, and time. SEM relations are stored as named graphs. The graph
URIs are used to store factuality values and provenance relations for each SEM relation
based on the GAF model. In Figure 20, an example is shown of the RDF-TRiG that is
produced.

The second phase of the overall process is divided into two steps, shown in Figure 21.

1. Create binary object files with all SEM event related data in separate Time Descrip-
tion folders.

2. Compare all object files in the same Time Description folder to establish cross-
document event instances and create a single RDF-TRiG file per folder with all
the data.

In the first step, we first obtain all instances as SEM objects with unique URIs and
all SEM relations between these objects from a NAF file, in Figure 21 NAF-1 and NAF-2.
From these SEM objects and relations, we create so-called CompositeEvent objects for
each event instance. A CompositeEvent object contains a single SEM event object and all
the other SEM objects and SEM relations related to this SEM event. All event instances
are bound to a time description, which can be a year, a month or day or a combination
of disjunct times. For each NAF file, we create as many binary object files as there are
different time descriptions associated with the events. The object files are stored in event
Time Description folders that correspond with the associated time description. In Figure
21, the two NAF files result in object files in the folders e-2011-01 and 2-2011-01-03.

The Time Description Folders are grouped in separate folder making a distinction
between the 3 main classes of events distinguished in NewsReader: source-introducing
events, grammatical events and contextuals. We use a classification of FrameNet frames
to distinguish these different types of events. Events that have no frame as an external

NewsReader: ICT-316404 February 3, 2015

System Design, Final 56/102

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix time: <http://www.w3.org/TR/owl-time#> .

@prefix eso: <http://www.newsreader-project.eu/domain-ontology#> .

@prefix gaf: <http://groundedannotationframework.org/gaf#> .

@prefix nwrontology: <http://www.newsreader-project.eu/ontologies/> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix sem: <http://semanticweb.cs.vu.nl/2009/11/sem/> .

@prefix fn: <http://www.newsreader-project.eu/ontologies/framenet/> .

@prefix nwrdata: <http://www.newsreader-project.eu/data/> .

<http://www.newsreader-project.eu/instances> {

<http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#ev20>

a sem:Event , fn:Placing , eso:Placing , nwrontology:SPEECH_COGNITIVE ;

rdfs:label "file" ;

gaf:denotedBy <http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#char=138,143> ,

<http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#char=327,332> .

<http://www.newsreader-project.eu/time/20111103>

a time:DateTimeDescription ;

time:day "---03"^^<http://www.w3.org/2001/XMLSchema#gDay> ;

time:month "--11"^^<http://www.w3.org/2001/XMLSchema#gMonth> ;

time:unitType time:unitDay ;

time:year "2011"^^<http://www.w3.org/2001/XMLSchema#gYear> .

<http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#tmx2>

a time:Interval ;

rdfs:label "2011" ;

gaf:denotedBy <http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#char=359,363> ,

<http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#char=364,365> ,

<http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#char=365,366> ,

<http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#char=367,371> ;

time:inDateTime <http://www.newsreader-project.eu/time/20111103> .

<http://www.newsreader-project.eu/data/cars/entities/KEIPER_GmbH_\%26_Co_KG>

a nwrontology:ORGANIZATION ;

rdfs:label "KEIPER GmbH & Co KG" ;

gaf:denotedBy <http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#char=118,137> ,

<http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#char=307,326> .

}

<http://www.newsreader-project.eu/provenance> {

<http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#tr2>

gaf:denotedBy <http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#char=93,143> .

<http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#pr6,rl11>

gaf:denotedBy <http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#char=307,332> .

<http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#fv01>

gaf:denotedBy <http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#char=138,143> ,

<http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#char=327,332> .

}

<http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#tr2> {

<http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#ev20>

sem:hasTime <http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#tmx1> .

}

<http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#pr6,rl11> {

<http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#ev20>

sem:hasActor <http://www.newsreader-project.eu/data/cars/entities/KEIPER_GmbH_\%26_Co_KG> ;

eso:translocation-theme <http://www.newsreader-project.eu/data/cars/entities/KEIPER_GmbH_\%26_Co_KG> ;

<http://www.newsreader-project.eu/ontologies/framenet/Placing@Agent>

<http://www.newsreader-project.eu/data/cars/entities/KEIPER_GmbH_\%26_Co_KG> ;

<http://www.newsreader-project.eu/ontologies/propbank/A0>

<http://www.newsreader-project.eu/data/cars/entities/KEIPER_GmbH_\%26_Co_KG> .

}

<http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#fv01> {

<http://www.newsreader-project.eu/data/cars/2013/01/29/57M5-WHY1-DXF1-N1JY.xml#ev20>

<http://www.newsreader-project.eu/ontologies/value/hasFactBankValue>

"CT+" .

}

Figure 20: Example of the TRiG format for a single event from the car data set

NewsReader: ICT-316404 February 3, 2015

System Design, Final 57/102

Figure 21: Overview of the NAF to SEM process

reference are considered to be contextual by default. Likewise, the result structure consists
of 3 main folders: source, contextual and grammatical, with a range of Time Description
subfolders and multiple object files within each Time Description Folder.

In the second step, we load all the object files from each subfolder and compare the
events to determine cross-document coreference. The details of the algorithm to determine
coreference are described in [Rospocher et al., 2015]. If two events are corefential, all the
information is merged. If not, it is kept separate. Finally, all the SEM objects, SEM
relations and GAF relations are serialized to a single RDF-TRiG file per folder.

Since the first step takes NAF streams as input, it can be included into the regular
processing pipeline of NewsReader. This process can be parallelized because each NAF
file will generate different unique object files. Parallel processing needs to share the Time
Description folders or the folders need to be merged in a separate step. The second step
needs to process all the objects files in the same folder and can only be parallelized per
folder. For processing the car data set, we used parallel processes for both steps.

In the 3rd year of the project, we will update this step by direct interaction with the
KnowledgeStore. In that case, we do not create an object file but we keep the composite
events of a NAF file or stream in memory. The second step of the processing then consists
of querying the KnowledgeStore for events that potentially describes the same event as the
target CompositeEvent does. The results of the SPARQL request will be represented as
CompositeEvents in memory in the same way as they are now read from the object files.
Comparing the new target event with the given events then can result in either a match
or not. If there is a match, the new information is merged with the given information. If
there is no match, the event is saved into the KnowledgeStore as a new event.

The new architecture is shown in Figure 22. In this design, we also include a further
division in topics that can come from a topic detection module. This means that each event

NewsReader: ICT-316404 February 3, 2015

System Design, Final 58/102

is not only classified by the 3 main event types in NewsReader but also for different topic
labels. In Figure 22, we show a subdivision of contextuals in takeover events. The Com-
positeEvent extraction generates a candidate event that is labeled as contextual-takeover
and bound to the time description 2011-01-03. A SPARQL request to the Knowledge-
Store results in two given events that have the same topic and the same time description.
The Crossdocument Event Coreference function now compares the new event with the
given events to determine identity. If identical, the new information is merged with one of
the given events and the NAF mentions for the event are updated. If not identical, it is
considered as a new takeover event and added as such to the KnowledgeStore.

Figure 22: Overview of the NAF to SEM process with direct integration with
the KnowledgeStore

The new architecture does not require any storage of intermediate result and can be inte-
grated directly into the NewsReader pipeline. Furthermore, we can fine-tune the SPARQL
requests to the KnowledgeStore to select the given events for comparison. This can be
events for the same topic, same time description and involving the same participants.

7.2 Performance of the NAF to SEM processing on the automo-
tive data set

We obtained 1.3 M news-articles from Lexis Nexis. Each text has been packed in ”raw”
NAF and annotated with the standard english pipeline. To this end a Hadoop set-up has
been made on the ”DAS” supercomputer of the Computer-science faculty. The pipeline
produced for each news-article a NAF-encoded file. In (gzip) compressed form the pro-
cessed NAF files take up 95 GB of disk space. In Figure 23, you can see how the 1.3M
NAF files are distributed over publication date. The volume is evenly distributed except
for the year 2012, which has twice the volume of news compared to the other years.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 59/102

 0

 50

 100

 150

 200

 250

 300

 2002 2004 2006 2008 2010 2012 2014

te
x
ts

 (
*
 1

0
0
0
)

year

Figure 23: Number of news-texts as a function of year

As explained in the previous section, the final NAF files are analyzed to obtain the Com-
positeEvent objects for each single NAF file. These objects are stored in binary files in
separate folders, the so-called Time Description Folders, based on the time-stamp associ-
ated to the event. All the events from a single NAF file are then divided over different
object files, each corresponding to different time-stamps. Different NAF files get differ-
ent unique object files based on the name of the NAF file but they are stored in the
same Time Description Folder for matching time-stamps. Hence, a NAF-file may produce
multiple object-files and a Time Description folder may contain object-files from multiple
NAF-files that share the same time-stamp.

The ClusterEventObjects Java program produced 10.4 M ”object” files in 1.03 M folders
(taking up 226 GB of disk-space).

To produce the ”obj” files, a set of 15 VM’s had been set up. On each VM four instances
of the Java program ran as parallel processes. The NAF files were distributed over the
15 VM’s and the folders with the produced obj files were collected and merged in a single
directory structure so that the object files with the same time-description folder across the
different VMs are merged into a single time-description folder. This step took about seven
days due to the intense moving of files.

The MatchCompositeEvent Java program then reads all objects files from a Time De-
scription Folder, compares the CompositeEvents and creates a single RDF-TRiG file per
folder. To this end the merged folder-structure was written on a physical (spindle) hard-disk
with capacity of 1 GB. Because it turned out that disk-access was the most time-consuming
part of the process, only a single process performed the merge. It took 64 hours to process
the 4.5 M ”contextual” object files.

The next table shows the overview statistics for the processing as an indication of
the infrastructure load. From the processing, we learned that the HPC cluster was not
optimized for handling many different files: copying, merging, compressing, decompressing,
etc. Especially in step 1, the process was delayed because of the file handling, such as
merging the Time Description Folders created by the 15 VMs. A lot of processing time
can still be gained by using a shared file system across the different VMs.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 60/102

Input data

NAF number 1.3M.
NAF diskspace compressed 95GB

Output data

OBJ number 10.4 M (4.5M. contextual; 2.5M. Grammatical; 3.4M. source)
OBJ diskspace 227GB
RDF-TRiG number 1.03M. (510K. contextual; 194K. grammatical; 328K. source)
RDF-TRiG diskpace compressed 5.44GB (4.4GB contextual; 744MB grammatical; 296MB source)

Step 1 ClusterCompositeEvents

Parallel 15 VM’s; four parallel processes each
CPU 1 CPU core per process
Total time app. zeven days (CPU-time not counted)

Step 2 CompareCompositeEvents

Parallel 1
CPU/process 1
Total time 60 hours for contextual

NewsReader: ICT-316404 February 3, 2015

System Design, Final 61/102

8 The KnowledgeStore

This section describes the activity of porting the KnowledgeStore on the SURFsara HPC-
Cloud infrastructure. SURFsara12 is a Dutch foundation that provides supercomputers,
collocation, networks and high-end visualisation to academic institutions. This activity
has been conducted in the context of the Enlighten Your Research (EYR413) program.

The motivations underlying the porting of the KnowledgeStore in the SURFsara in-
frastructure are multiple: first, we intended to test the portability of the KnowledgeStore
application outside the FBK infrastructure on which it was developed. Second, installing
the KnowledgeStore on the SURFsara facilities has been a first important step with re-
spect to enhancing its scalability. Third, we aimed at check the usability of the ported
KnowledgeStore for one of the actual NewsReader use-cases.

8.1 Setup and Configuration

The KnowledgeStore is built on top of Java jdk1.7.0 51 and uses the Java packages Hadoop
1.0.4, HBase 0.94.10, Zookeeper 3.4.5, Bookkeeper 4.2.2 and Omid (FBK development over
version 0c24b16). In addition it utilizes the Virtuoso Open-Source Edition 7.0.1.

The KnowledgeStore is a distributed application. The system ported on SURFsara HPC-
Cloud utilizes a set of five virtual machines (VMs) configured with the Linux CentOS release
6.5 (Final) OS. The VM1 hosts the HBase, Hadoop and Zookeeper masters, as well as the
Omid transaction server. VMs from 2 to 4 host the HBase, Hadoop and Zookeeper slaves.
The VM5 hosts the Virtuoso triple store and the KnowledgeStore front-end (also known as
the KnowledgeStore server).

The KnowledgeStore installation package is a tarball file including a portion of the file
system that is self-contained: the tarball comprises all the required software (including
java) as well as additional directories to store the data that will be created by the packages
at run time. It is worth noticing here that the software can run without root permissions.
The tarball includes a script to configure automatically the 5 VMs once decided their role.

8.2 Experiments

The KnowledgeStore ported on SURFsara HPC-Cloud has been successfully populated with
a small test set of 20 NAFs from the World Cup domain utilized for the Hackathon held
on June, 2014.

In term of performance, preliminary experiments on both the population and lookup
functionalities indicate a increase of the time spent of a factor around 10 with respect to
a similar setup running on the FBK infrastructure.

The reason of such degradation of the performance is related to the features of the
infrastructure at SURFsara HPC-Cloud cluster. It is based on a centralized File System:
all the machines in such cluster use the same File System through NFS; machines have

12https://www.surfsara.nl/
13https://www.enlightenyourresearch.net

NewsReader: ICT-316404 February 3, 2015

System Design, Final 62/102

no local File Systems. This is a choice underlying the HPC-Cloud cluster whose target
is to maximize the computation power and not the I/O throughput. On the other hands
the KnowledgeStore is structurally based on a distributed architecture (Hadoop and HBase
are natively distributed in order to achieve scalability and fault tolerance). What happens
with the KnowledgeStore ported on SURFsara HPC-Cloud is that all its daemons running
on the five VMs utilize the same centralized File System via NFS. In addition, also all the
machines in the HPC-Cloud cluster utilize the same File System. Therefore it is highly
probable that the File System becomes overloaded and the bottleneck of the application.

The port of the KnowledgeStore on SURFsara HPC-cloud has been a very interesting
activity to develop such application on a typical cloud infrastructure, showing the Knowl-
edgeStore portability and scalability. We plan to do a further step in porting the Knowl-
edgeStore on another SURFsara infrastructure, the Hadoop cluster: since it offers Hadoop
and HBase as native packages, it appears to be much better suited for the intrinsic distri-
butional nature of the KnowledgeStore.

9 Conclusion and future work

This deliverable describes the second version of the System Design architecture developed
in NewsReader to process large and continuous streams of English, Dutch, Spanish and
Italian news articles.

We described the work carried out to accurately measure the spent time of each NLP
module, including the times spent on each stage of the processing (initialization, conversion
from NAF to the native format, etc). This is a necessary step towards the optimization of
each NLP module, which helps us to focus on the critical aspects of each NLP module.

We have developed two alternative architectures for NLP distributed processing, for a
batch and streaming computing scenarios, respectively. In the deliverable we describe each
of the solutions, detailing the main components of each one. We also present a set of scripts
developed within the project that quickly create a basic cluster of nodes for distributed
processing. All the software, including the NLP modules, as well as the basic components
of the clusters is publicly available and is distributed under open licenses.

The deliverable also describe the latest additions to the Grounded Annotation Frame-
work (GAF) that is used within the project to accurately represent the events and partic-
ipants extracted from the texts. In particular, we report the representation of provenance
information within GAF, which allows comparing perspectives from different sources about
some particular event or fact.

The result of the processing pipeline is a set of documents annotated using the NLP
Annotation Format (NAF), developed within the project. These NAF documents are then
converted to GAF representations, removing duplicates and harmonizing the information
that come from different documents. In the deliverable we describe how this process is
actually performed.

We also describe the first steps towards the integration of the KnowledgeStore into a
HPC cloud infrastructure, an important aspect necessary to enhance the scalability of the

NewsReader: ICT-316404 February 3, 2015

System Design, Final 63/102

repository.
In the future we want to further optimize the pipeline by explore the use of different

granularities, that is, exploiting the fact that NLP modules work at different type of
granularity. For instance, a POS tagger works at a sentence level, the WSD module
works at paragraph level, whereas a coreference module works at a document level. We
want to experiment splitting the input document into pieces of the required granularity, so
that the NLP modules can quickly analyze those pieces. In fact, the experiments carried
out with non-linear topologies in Section 4.4 suggests that there is an upper bound in
the performance gain when performing document-level processing. The reason is that
some modules spend a large amount of time processing the document, thus representing a
bottleneck in the processing. Therefore, we could expect a significant performance boost
if we were able to run many instances in parallel of those processors at a finer level of
granularity, i.e., sentences or paragraphs.

One important aspect is, however, the times spent by the modules in the initialization
phase. The experiments of Section 2 clearly suggest that some modules take too much time
initializing, and that much time is wasted by performing a full initialization each time the
module is called. If we want to experiment with different granularities (which would require
calling the module more times, thus suffering the initialization penalty more times), we
have to seriously consider converting some modules architectures into a server/client model.

This second year we have mainly focused on the parallelization of NLP processing.
Although the work on WP2 was meant to finish on this second year, we consider that some
additional effort has to be made within WP2 in order to create a system where all the
components are integrated. This would include the integration with the cross document
processing modules developed on WP5, including integrated access to the KnowledgeStore
to retrieve all the required information, as well as the integration to the Decision Support

NewsReader: ICT-316404 February 3, 2015

System Design, Final 64/102

NewsReader: ICT-316404 February 3, 2015

System Design, Final 65/102

A Processing step per phase for individual modules

This section provides an overview of the experiments carried out on individual modules.
The results of the average time spent by a module are based on these outcomes. An
overview is given in the Figures below.

Figure 24: Ixa-pipe tokenizer processing time analysis

NewsReader: ICT-316404 February 3, 2015

System Design, Final 66/102

Figure 25: Ixa-pipe POS tagger processing time analysis

Figure 26: VUA multiword-tagger processing time analysis

NewsReader: ICT-316404 February 3, 2015

System Design, Final 67/102

Figure 27: Ixa-pipe NERC tagger processing time analysis

Figure 28: VUA opinion miner processing time analysis

NewsReader: ICT-316404 February 3, 2015

System Design, Final 68/102

Figure 29: VUA svm-wsd processing time analysis

NewsReader: ICT-316404 February 3, 2015

System Design, Final 69/102

Figure 30: Spotlight-based NED processing time analysis

NewsReader: ICT-316404 February 3, 2015

System Design, Final 70/102

Figure 31: MATE tool-based SRL and dependency parsing processing time analysis

NewsReader: ICT-316404 February 3, 2015

System Design, Final 71/102

Figure 32: TimePro processing time analysis

NewsReader: ICT-316404 February 3, 2015

System Design, Final 72/102

Figure 33: VUA event coreference processing time analysis

NewsReader: ICT-316404 February 3, 2015

System Design, Final 73/102

Figure 34: VUA-factuality processing time analysis

NewsReader: ICT-316404 February 3, 2015

System Design, Final 74/102

NewsReader: ICT-316404 February 3, 2015

System Design, Final 75/102

B Alternative proposals for modeling attribution

This section describes the first proposals we considered for modeling attribution, which
model this on an instance level. If we relate attribution to instances, we can only treat
scope correctly if we assign attribution values to triples rather than events. For instance,
the sentence Chrysler sells Liberty SUVs, the attribution values apply to the following
triples:14

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev17Sell

a sem:Event , fn:Commerce_sell , eso:Selling .

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev17Sell

eso:possession-owner_1 dbp:resource/Chrysler ;

fn:Commerce_sell@Seller dbp:resource/Chrysler ;

fn:Commerce_sell@Goods nwr:data/cars/entities/Liberty_SUVs .

rather than just the event sell. This applies to all proposals that model attribution at
the instance level.

We will use the same example sentences as in Section 6 to illustrate the proposals
outlined below. For convenience, they are repeated below:

:NGsell {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev17Sell

a sem:Event, fn:Commerce_sell , eso:Selling ;

fn:Commerce_sell@Seller dbp:resource/Chrysler;

fn:Commerce_sell@Goods nwr:data/cars/entities/Liberty_SUVs .

}

:NGexpect {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev16Expect

a sem:Event, fn:Expectation ;

fn:Expectation@Cognizer dbp:resource/Chrysler ;

sem:hasTarget :NGsell .

}

:NGsay {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev11Say

a fn:Statement ;

fn:Statement@Speaker dbp:resource/Dieter_Zetsche ;

sem:hasPlace nwr:/data/cars/entities/DaimlerChrysler_Innovation_Symposium ;

sem:hasTarget :NGexpect .

}

:NGsymposium {

nwr:/data/cars/entities/DaimlerChrysler_Innovation_Symposium

sem:hasPlace dbp:resource/New_York_City .

}

Figure 35: Triples modelling basic example sentences

(7) Chrysler expects to sell 5,000 diesel Liberty SUVs, President Dieter Zetsche says
at a DaimlerChrysler Innovation Symposium in New York.

14For reasons of space and because the examples are mainly meant to illustrate relations, we will not
define the namespaces in these examples.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 76/102

Figure 36: Illustration of triples modelling basic example

(8) Manfred Bischoff said that Chrysler will probably not sell 5,000 diesel Liberty
SUVs.

Figure 35 provides the simplified RDF representation including all relations between
events and entities of the sentence in (7) after a correct analysis.

The additional (made-up) sentence in (8) adds the following triples (note that Bischoff
makes a statement about the same selling event):

:NGsay2 {

nwr:madeupexampe#ev132Say

a fn:Statement ;

fn:Statement@Speaker dbp:resource/Manfred_Bischoff ;

sem:hasTarget :NGsell .

}

Figure 36 provides an illustration of the triples of the original example expressions and
the additional made up example.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 77/102

B.1 Proposal 1: Attribution applies to the statements

The first proposal assumes that attribution applies to statements. The attribution values
are linked to the named graph that includes the statements they apply to. The triples
below provide the attribution values for the basic structure presented in Figure 35. Fig-
ure 38 illustrates how these triples are integrated in the representation of the two example
sentences.

Figure 37: Illustration of triples modelling basic example, proposal 1

:NGsell nwrontology:hasAttribution nwrontology:attrPOSPROBF .

:NGexpect nwrontology:hasAttribution nwrontology:attrPOSCERTNF .

:NGsay nwrontology:hasAttribution nwrontology:attrPOSCERTNF .

Consider the additional example sentence that expresses an alternative opinion on
Chrysler selling 5,000 SUVs. If we use the same named graph to express the target of the
expectation event in :NGexpect and the saying event in :NGsay2 as is done in Figure 36,
we cannot distinguish which attribution values are assigned by whom. Each statement
that assigns alternative attribution values to an existing statement therefore needs to have
its own target. Figure 39 illustrates what this looks like (the statement by Dieter Zetsche
is omitted for reasons of space) and Figure 38 provides a graphic illustration.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 78/102

Figure 38: Alternative views proposal 1

NewsReader: ICT-316404 February 3, 2015

System Design, Final 79/102

:NGsell {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev17Sell

a sem:Event, fn:Commerce_sell , eso:Selling ;

fn:Commerce_sell@Seller dbp:resource/Chrysler;

fn:Commerce_sell@Goods nwr:data/cars/entities/Liberty_SUVs .

}

:NGsell_b {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev17Sell

a sem:Event, fn:Commerce_sell , eso:Selling ;

fn:Commerce_sell@Seller dbp:resource/Chrysler;

fn:Commerce_sell@Goods nwr:data/cars/entities/Liberty_SUVs .

}

:NGsay2 {

nwr:madeupexampe#ev132Say

a fn:Statement ;

fn:Statement@Speaker dbp:resource/Manfred_Bischoff ;

sem:hasTarget :NGsell_b .

}

:NGexpect {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev16Expect

a sem:Event, fn:Expectation ;

fn:Expectation@Cognizer dbp:resource/Chrysler ;

sem:hasTarget :NGsell .

}

:NGsell nwrontology:hasAttribution nwrontology:attrPOSPROBF .

:NGsell_b nwrontology:hasAttribution nwrontology:attrNEGPROBF .

:NGexpect nwrontology:hasAttribution nwrontology:attrPOSCERTNF .

:NGsay2 nwrontology:hasAttribution nwrontology:attrPOSCERTNF .

Figure 39: Triples modelling alternative perspectives under proposal 1

NewsReader: ICT-316404 February 3, 2015

System Design, Final 80/102

:NGsell {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev17Sell

a sem:Event, fn:Commerce_sell , eso:Selling ;

fn:Commerce_sell@Seller dbp:resource/Chrysler;

fn:Commerce_sell@Goods nwr:data/cars/entities/Liberty_SUVs .

}

:NGexpect {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev16Expect

a sem:Event, fn:Expectation ;

fn:Expectation@Cognizer dbp:resource/Chrysler .

}

:NGexpectTarget {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev16Expect

sem:hasTarget :NGsell .

}

:NGsay {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev11Say

a fn:Statement ;

fn:Statement@Speaker dbp:resource/Dieter_Zetsche ;

sem:hasPlace nwr:/data/cars/entities/DaimlerChrysler_Innovation_Symposium .

}

:NGsayTarget {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev11Say

sem:hasTarget :NGexpect .

}

:NGexpectTarget nwr:hasAttribution nwr:attrPOSPROBF .

:NGsayTarget nwr:hasAttribution nwr:attrPOSCERTNF .

Figure 40: Attribution modelling on example with Proposal 2

B.2 Proposal 2: Attribution applies to the relation between
source and statement

This proposal reflects the idea that attribution values really say something about the
relation between the source and the statement attribution applies to. It captures this idea
by linking attribution values to the triple that links the speech or cognitive verb and the
statement. In the example, attribution values are assigned to the relation between expect
and Chrysler selling SUVs and, respectively, say and Chrysler’s expecting to sell SUVs.

Attribution values of statements that are made directly by the author are modelled on
the relation between these statements and the metadata (this part is left out of the picture
for reasons of space and clarity).

Just like for the first proposal, we consider the additional expression that assigns differ-
ent attribution values to Chrysler selling SUVs. In this case, the statement about selling
cars need not be repeated: a new saying event that has the selling event as its target
is added and the alternative attribution values are linked to this relation as shown in
Figure 41. Figure 42 provides a graphic illustration.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 81/102

:NGsell {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev17Sell

a sem:Event, fn:Commerce_sell , eso:Selling ;

fn:Commerce_sell@Seller dbp:resource/Chrysler;

fn:Commerce_sell@Goods nwr:data/cars/entities/Liberty_SUVs .

}

:NGexpect {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev16Expect

a sem:Event, fn:Expectation ;

fn:Expectation@Cognizer dbp:resource/Chrysler .

}

:NGexpectTarget {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev16Expect

sem:hasTarget :NGsell .

}

:NGsay2 {

nwr:madeupexampe#ev132Say

a fn:Statement ;

fn:Statement@Speaker dbp:resource/Manfred_Bischoff .

}

:NGsay2Target {

nwr:madeupexampe#ev132Say

sem:hasTarget :NGsell .

}

:NGsay {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev11Say

a fn:Statement ;

fn:Statement@Speaker dbp:resource/Dieter_Zetsche ;

sem:hasPlace nwr:/data/cars/entities/DaimlerChrysler_Innovation_Symposium .

}

:NGsayTarget {

nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev11Say

sem:hasTarget :NGexpect .

}

:NGexpectTarget nwr:hasAttribution nwr:attrPOSPROBF .

:NGsay2Target nwr:hasAttribution nwr:attrNEGPROBF .

:NGsayTarget nwr:hasAttribution nwr:attrPOSCERTNF .

Figure 41: Attribution modelling on example with Proposal 2, alternative views

B.3 Proposal 3: Attribution is assigned by reifying relations

The final way we may model attribution at an instance level is by using reification. Reifi-
cation can generally be used instead of named graphs to model a property of a triple.
Generally speaking, named graphs are preferable when statements are made about groups
of triples. When statements are mainly made about individual triples, reification becomes
an interesting alternative. The second proposal has the disadvantage that the triple indi-
cating the sem:hasTarget relation needs to be placed in a named graph only to be able to
make statements about this triple. As a result, we may end up with a model where the ac-

NewsReader: ICT-316404 February 3, 2015

System Design, Final 82/102

Figure 42: Alternative views proposal 2

tual triples are embedded in several layers requiring complex triples to retrieve information
about attribution.

The representation below illustrates how sem:hasTarget can be expressed through
reification:

:targetRel16 a sem:targetRel ;

sem:hasSource nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev16Expect .

sem:hasObject :NGsell .

:targetRel11 a sem:targetRel ;

sem:hasSource nwr:/data/cars/2003/01/01/47VH-FG30-010D-Y3YG.xml#ev11Say .

sem:hasObject :NGexpect .

:targetRel132 a sem:targetRel ;

sem:hasSource nwr:madeupexampe#ev132Say .

sem:hasObject :NGsell .

Attribution values can be linked directly to a specific sem:targetRel:

NewsReader: ICT-316404 February 3, 2015

System Design, Final 83/102

:targetRel16 nwr:hasAttribution nwrontology:attrPOSPROBF .

:targetRel11 nwr:hasAttribution nwrontology:attrPOSCERTNF .

targetRel132 nwr:hasAttribution nwrontology:attrNEGPROPBF .

This is illustrated in Figure 43.

Figure 43: Alternative views proposal 3

B.4 Concluding remarks

Considering we have decided to model attribution at the mention level, there is no need to
elaborate extensively on the discussions we have had comparing these proposals. We will
therefore only briefly mention the conclusions we came to before the mention level modeling
was proposed. Modeling attribution at the target level has the advantage that it captures
the intuition that attribution is related to both the statement and its source. Because
of the disadvantage that multiple embeddings can lead to, it seems like the reification
solution is preferable in this case, though this may depend on the number of embeddings
we actually observe (it is likely that they are quite rare). Duplicating triples as done in
the first proposal also seems suboptimal. However, if we take into consideration that it
is in general a hypothesis that two statements talk about the same thing (based on the

NewsReader: ICT-316404 February 3, 2015

System Design, Final 84/102

outcome of our algorithms), this may be an advantageous solution if we adopt an approach
where we always create new instance when finding an event and then use the owl:sameAs

(or a similar) relation to indicate that they are the same. In that case, the first proposal
could quite naturally be integrated in our model. We currently believe attribution is best
modelled at a mention level, but if we cannot resolve some of the open issues, we may turn
back to these proposals.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 85/102

Figure 44: Main architecture of the NWR distributed pipeline

C NewsReader architecture for distributed NLP pro-

cessing

This document describes the distributed pipeline implemented within the NewsReader
project. The pipeline follows an streaming computing architecture, where the computation
is not limited to any timeframe. Instead, the pipeline is always waiting to the arrival of
new documents, and one such new document arrives the NLP processing starts.

Figure 44 shows a general overview of the NewsReader distributed pipeline. The
processing NLP modules and the software infrastructure for performing parallel and dis-
tributed streaming processing of documents is packed into virtual machines (VM). Specif-
ically, we distinguish two types of VM into the cluster:

• One “boss” node, which is the main entry of the documents and which supervises
the processing.

• Several “worker” nodes, which actually perform the NLP processing.

The boss node is the entry point for input documents. It contains a document queue
where the input documents are stored and wait until they enter the pipeline. It also
supervises the execution of the different stages of the processing pipeline. When the NLP
processing is over, the boss node receives the processed NAF document into the output
queue, and writes it in a specified directory.

The boss node implements a REST service that accept documents to the processing
pipeline. For instance, the following command sends the document doc.xml to the pro-
cessing pipeline15:

% curl --form "file=@doc.xml" http://BOSSIP:80upload_file_to_queue.php

15In this document we will show many examples which are commands to execute from the CLI. If the
command has to be executed from the host machine, we will use the ’%’ character in the beginning of the
line. If the command is meant to be executed from the boss machine, we will use the ’$’ character.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 86/102

Once the NLP processing is finished, the final NAF will be stored inside the boss VM,
under the docs/output directory. In principle those documents should be sent to the
KnowledgeStore (KS), but at the time being this last module which populates the KS with
the processed NAFs is not ready.

The worker nodes are the nodes where the NLP modules are executed. There can be
many worker nodes in a cluster, and therefore there can be many instances of the modules
running in parallel.

This document is a reference guide that covers the most important steps to build a
NewsReader architecture from scratch.

C.1 VM from scratch

We distribute a set of scripts with the aim of automatically create a fully working cluster
for distributed NLP processing. We call these scripts “VM from scratch”, as they create
and configure the required virtual machines. The scripts are in a github repository, at this
address:

https://github.com/ixa-ehu/vmc-from-scratch

The latest version of the documentation is also in the same repository, under the doc

directory.
Creating a cluster using the scripts involves three main steps:

1. Create a basic cluster with the boss node and one worker node.

2. Make as many copies as required of the worker node.

3. Deploy the worker copies among different hosts and run the cluster.

The subsections below will describe how to use the provided scripts to achieve these
goals in turn.

C.1.1 Create a basic cluster

The first step is to create the basic cluster using the create basic cluster.pl script.
Please note that the VM images created by these scripts are huge (9 Gb memory), as
they contain all the NLP modules of the Newsreader processing pipeline. Likewise, the
machine to install those VMs need to have a large amount of RAM memory, as each VM,
particularly the worker nodes, need circa 10Gb of memory to run.

The script is executed as follows16:

16In ubuntu machines, install the following packages before running this script

• libvirt-bin

• libguestfs-tools

• qemu-kvm

NewsReader: ICT-316404 February 3, 2015

System Design, Final 87/102

% sudo create_basic_cluster.pl --boss-ip 192.168.122.111 --boss-name bossvm \\

--worker-ip 192.168.122.112 --worker-name workervm1

The script needs four parameters:

• --boss-ip (required) the IP address of the boss VM17.

• --boss-name (required) the hostname of the boss VM

• --worker-ip (required) the IP address of the first worker VM created by this script.

• --worker-name (required) the hostname of the worker VM.

• --master-ip (optional) the IP address of the IXA master machine. This machine
is where the latest version of all NLP modules are.

Use the --help option to obtain information about the script’s parameters (this option
is present in all scripts described here).

The script will perform the following steps for creating the basic cluster:

• Copy an empty VM image from the IXA servers.

• Create the boss VM image using the empty VM image. In the example above, the
hostname of the boss VM is “bossvm” and its IP address is 192.168.122.111.

• Create the worker VM image using the empty VM image. In the example above, the
hostname of this worker VM is “workervm1” and its IP address is 192.168.122.112.

• The VMs have an unique user “newsreader” whose password is “readNEWS89”. The
user can sudo any root commands inside the VMs.

The next step is to turn on both VMs and start a synchronization process so that
the required software (both the system software as well as the NLP modules) is properly
installed in the newly created VMs.

The above script creates two XML definition files with the specification of the boss and
worker virtual machines18. To (locally) run the VMs, run the following commands as root
from the host machine:

% virsh create nodes/bossvm.xml

% virsh create nodes/workervm1.xml

Once the machines are up and running, we ssh into the boss VM.

besides, you’ll need to run
% sudo update-guestfs-appliance

17In this example and in the examples below we will use private IP addresses for the boss and worker
IPs. See section C.1.5 for more information about IP addresses.

18See section C.1.3 on the XML definitions of the VMs.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 88/102

% ssh newsreader@192.168.122.111

(pass: readNEWS89)

Once logged into the boss VM, run the following:

$ sudo /root/init_system.sh

This command prepares installs all required software into both virtual machines (boss
and worker). Specifically, the script performs the following steps:

• Install the required software into the boss VM. This involves the installation, among
others, of the following packages:

– Zookeeper

– Storm

– Kafka

– MongoDB

– Puppet

• Synchronize the boss VM with the IXA master VM to obtain all the NLP modules.

• Synchronize the worker VM with the boss VM to obtain a copy of all the NLP
modules.

• Start the puppet agents on both the boss and worker VMs.

When the scripts finalizes the basic cluster is finally created and configured. The boss
VM image is stored in the file nodes/bossvm.img and the worker image is nodes/workervm1.img.
The cluster is already ready for processing documents, although it does not make much
sense to use a cluster with a single worker node. Therefore, the next step is to create the
required copies of the worker VMs.

C.1.2 Making copies of worker VMs

The next step is thus to copy the worker VM and create new worker nodes in the cluster.
Before doing this, however, the boss and the worker VMs must be shut down. There are
several ways to shut down the cluster. One possible way is, being into the boss VM, is to
execute the following:

$ sudo pdsh -w workervm1 poweroff

$ sudo poweroff

The first command remotely shuts down the worker VM, whereas the second command
shuts down the boss VM itself. In any case, check that the VMs are properly shut down by
executing the sudo virsh list command from the host machine. The command should
return an empty list of VMs:

NewsReader: ICT-316404 February 3, 2015

System Design, Final 89/102

% sudo virsh list

Id Name State

--

Once the cluster shut down, one can make as many copies as wanted of the worker
nodes. The script cp worker.pl accomplishes this task:

% sudo ./cp_worker.pl --boss-img nodes/bossvm.img \

--worker-img nodes/workervm1.img 192.168.122.102,workervm2

The script needs two parameters with the images of the boss VM and the first created
worker VM (workervm1 in our example). Then, the script accepts a space separated list
of IP,hostname pairs. The above example just creates a copy of the worker VM, called
workervm2, whose IP address will be 192.168.122.102. Of course, it is very important
that each VM receives a different hostname and IP address.

If we were to create more copies of the VM, we can just run the script again, the
only requisite being that the cluster VM can not be running. For instance, the following
command will create two more worker nodes:

% sudo ./cp_worker.pl --boss-img nodes/bossvm.img \

--worker-img nodes/workervm1.img \

192.168.122.103,workervm3 192.168.122.104,workervm4

After this step we need to boot the cluster manually. Section C.1.4 explains how to
power on and power off the whole cluster at any time.

Creating copies of the worker without stopping the cluster The requirement of
having to stop the cluster before making copies of the workers may too hard to fulfill, in
the case the cluster is running and processing documents. Therefore, we present a method
to create worker nodes without the need to stop the whole cluster. However, this method
needs a copy of a worker image, and it is very important that this particular image is not
running.

For creating a worker without stopping the cluster, execute the following:

% sudo ./cp_worker.pl --boss-img nodes/bossvm.img \

--worker-img nodes/workervm1.img \

192.168.122.105,workervm5

This will create the new workervm5 node with IP address 192.168.122.105. Now, we
need to log into the boss node, and manually add this new address to the /etc/hosts file:

% sudo echo "192.168.122.105 workervm5" >> /etc/hosts

The next step is to stop the topology (see section C.2) and run it again with the proper
number of workers/CPUs.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 90/102

C.1.3 Virtual machines XML definitions

The virtual machines specifications are defined in a XML document, one document per VM.
These XML specification document is stored along with the VM image, i.e., if the image is
in nodes/workervm1.img, the corresponding XML specification is nodes/workervm1.xml.
You may want to manually edit the XML specification file to change some important
things:

• The number of CPUs assigned to the VM (line 6, /domain/vcpu element). By default
VMs are assigned 1 CPU but this can be easily changed. In fact, we recommend
to increase the number of CPUs per worker whenever possible.

• The memory assigned to the VM (line 4, /domain/memory element). By default VMs
are assigned 10Gb of RAM (needed mostly by the NED module).

• The exact location of the image files (line 22, /domain/devices/disk/source ele-
ment). If you plan to deploy the worker VM on a different machine, you must change
this value to the directory where the worker image file will be.

C.1.4 Booting and stopping the cluster

Boot the boss VM by running this into the host machine:

% sudo virsh create nodes/bossvm.xml

The host needs some time to start all the required services. To be completely sure that
the machine is ready, run the following command inside the boss machine until it produces
some output. First ssh into the boss VM, and then:

$ ps -aux | grep zoo | grep java

Once the boss is ready, turn on the worker nodes running the following inside the host
machine:

% sudo virsh create nodes/workervm1.xml

% sudo virsh create nodes/workervm2.xml

...

The above commands will start the worker VMs in turn. Each VM needs some time
to boot up (mostly due to the required time in loading the NED module). Section C.1.6
explains how to know which machines are connected to the boss VM.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 91/102

C.1.5 Deploying worker VMs into different host machines

In principle the worker VMs can be executed in any host machine, as far as the host has
a 64 bit CPU. The main requirement is that the IP of the worker VM, as specified when
creating the VM image, is accessible from within the boss VM. Likewise, the boss IP has
to be accessible from the worker VM.

In the examples on this document all the IPs are private IPs, and therefore not accessible
from outside the host machine. If you need to copy the worker VMs among several host
machines, perhaps the best way is to use a bridged network configuration (not explained
here). Alternatively, you can use iptables for allowing external access through ssh to
the VM. In any case, talk with the IT people in your laboratory to correctly set-up the
environment.

C.1.6 Knowing which machines are connected to the boss VM

When the cluster is up and running, we can consult any time which worker machines are
connected to the boss. This is easily done by querying the STORM server on the boss VM.
From inside the boss VM, run the command line “elinks” web browser:

$ elinks localhost:8080

Another option is to connect to the boss VM from the host machine, by putting the
address http://ip of boss:8080. In the running example used in this document the boss
IP is 192.168.122.111, we should put the address http://192.168.122.111:8080 into the
web browser.

C.2 Running the topology

The steps described in section C.1 will create a cluster that is ready to start the NLP
processing. For this, we need first to load a topology into the cluster. The topology is an
abstraction that describes processing steps each document passes through. In principle the
cluster can run any topology, the only requisite being that the NLP modules described in
the topology are installed in the worker VMs.

Topologies are declaratively described in an XML document. There are already some
topologies in the bossvm opt/topologies/specs directory. In this example, we will run
the topology described in opt/topologies/specs/test.xml.

Apart from the topology definition, running the topology requires knowing the number
of worker nodes in the topology, and the number of CPUs used. In the running example
of this document we are using three workers. Suppose we also use two CPUs per worker19.
So, the total of CPUs assigned to worker nodes is 6. This parameter is very important
because it fixes the maximum parallelization we can achieve. If we have 6 CPUs working
on our cluster, it makes little sense to have more than 6 copies of any NLP module running
in parallel.

19Section C.1.3 describes how to change the number of CPUs assigned to a node

NewsReader: ICT-316404 February 3, 2015

System Design, Final 92/102

Inside the boss VM, run the following to run the topology:

$ opt/sbin/run_topology.sh -p 6 -s opt/topologies/specs/test.xml

This will load the topology and, as a consequence, the cluster will be ready to accept
and process documents.

The script also accepts another optional parameter to specify the main configuration of
the topology, the default value being opt/etc/topology/topology.conf. This configura-
tion file is seldom changed within the newsreader project, and specifies values such as the
port and addresses of various services such as zookeeper, kafka, mongoDB, etc. However,
there is one parameter that need to be checked. The “host” values (zookeeper.host,
kafka.host, mongodb.host) need to point to the hostname of the boss node (by default,
bossvm).

C.2.1 Topology XML specification

The topology executed by the cluster is declaratively defined in an XML document. Here
is an excerpt of a small topology:

<topology>

<cluster componentsBaseDir="/home/newsreader/components"/>

<module name="EHU-tok" runPath="EHU-tok/run.sh"

input="raw" output="text"

procTime="10"/>

<module name="EHU-pos" runPath="EHU-pos/run.sh"

input="text" output="terms"

procTime="15" source="EHU-tok"/>

<module name="EHU-nerc" runPath="EHU-nerc/run.sh"

input="terms" output="entities"

procTime="75" source="EHU-pos"/>

</topology>

The <cluster> element specifies the base directory of the NLP modules. Each module
is described by a <module> element, whose attributes are the following:

• name (required): the name of the module.

• runPath (required): the path relative to componentsBaseDir where the module
resides.

• input (required): a comma separated list of NAF layers required by the module as
input.

• output (required): a comma separated list of NAF layers produced by the module.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 93/102

• source (optional): the previous module in the pipeline. If absent, the attribute will
get the value of the immediately preceding it according to the XML tree. If the
module is the first node in the XML tree, and the source attribute is absent, the
attribute gets no value at all.

• procTime (optional): the percentage of time this particular module uses when pro-
cessing a document.

• numExec (optional): the number of instances of the module that will run in parallel.

The topology is defined by looking at the chains of source attributes among the mod-
ules, which have to define a directed acyclic graph. The module without parents is consid-
ered to be the first module in the pipeline. Likewise, the module without children is the
last module in the pipeline. In principle the declaration may define non linear topologies,
but at the moment its use is not properly tested, and thus not recommended.

The last two attributes are very important and require some tuning in order to obtain
the maximum efficiency when processing the documents. There are two ways of calculating
these factors. If the numExec parameter is present, this particular number of instances will
be used. If numExec is absent, the system will use the procTime information, along with
the number of nodes/CPUs to automatically calculate the number of instances of each
module. The main idea is to execute as many copies as possible of the most resource
demanding modules. Finally, if both numExec and procTime are absent, the system will
run one single instance of the module.

C.3 Troubleshooting and tools

This section describes the most usual tasks performed by the cluster administrator to
manage and monitorize the cluster, as well as when facing many problems that may occur.
In principle the cluster should run flawlessly and without errors; it should just accept
documents via the boss input port or inside the boss machine itself, and the documents
should get processed, put in the output queue of the boss machine, and written to the
docs/output in the boss machine. However, if something goes wrong there are some
useful commands to help understanding what is happening.

C.3.1 Synchronizing the modules

The NLP modules are constantly being developed and upgraded into the IXA master
machine. Obtaining the latest version of the modules from the master node into the
cluster involves two steps. First, synchronize the boss node with the IXA master node;
then, synchronize each worker node with the boss node.

For synchronizing the boss node with the IXA master, log in into the boss VM and run
the following:

$ sudo ./update_nlp_components_boss.sh

NewsReader: ICT-316404 February 3, 2015

System Design, Final 94/102

For updating the workers there are two main options. One option is to log in into each
of the workers and execute the following:

$ sudo ./update_nlp_components_worker.sh

The other is to update the worker nodes from inside the boss node, using the pdsh

command. Being logged into the boss machine, run the following for each worker node:

$ sudo pdsh -w ip_of_worker /home/newsreader/update_nlp_components_worker.sh

C.3.2 Document queue

The boss VM contains two document queues, for input and output NAF documents, re-
spectively. The input queue stores the documents to be processed until they are consumed
by the NLP pipeline. The output queue stores the final NAF documents.

In principle, the usage of the queues is wholly automatic. The user sends a document
to the input queue, and eventually the processed document is enqueued into the output
queue. However, it is important to have some basic notions about how these queues are
implemented in case we want to consult the contents of a particular queue, or if we want
to manually send or retrieve documents.

The queues are implemented using “Apache Kafka”20. Kafka is a messaging system that
can be distributed among many machines and that provides fast and reliable access to the
queue contents. Queues in Kafka are organized into topics and partitions. In NewsReader
we have two topics, called “input queue” and “output queue”, respectively, and each
topic has one unique partition. Once a documents is sent to the queue, it stays there for a
specific time frame, which by default is set to seven days. The input queue is attached to
a consumer that continually pulls documents from the queue and sends them to the first
stage of the processing pipeline. It also maintains an offset to the last consumed document
in the queue.

Inside the boss VM there are some tools which can help with the management of the
queues. Currently there exist the following tools:

send to queue

This tool is useful for feeding the input queue with documents from inside the boss VM.
The usage is as follows:

$ opt/sbin/push_queue -f docs/input/input.xml

Please note that documents can be sent to the input queue from outside the boss VM,
by using the following command:

% curl --form "file=@input.xml" http://BOSSIP:80/cm_upload_text_file.php

20http://kafka.apache.org/

NewsReader: ICT-316404 February 3, 2015

http://kafka.apache.org/

System Design, Final 95/102

this is meant to be the principal way to send documents into the NewsReader pipeline.
The send to queue tool is an auxiliary tool for manually feeding the input queue with new
documents.

ls queue

Sometimes it is useful to know which documents are present in a queue (input or output),
and the ls queue command does exactly this. This is a typical example of usage (from
inside the boss VM):

$ opt/sbin/ls_queue

doc18.txt 1209 9 input_queue

doc20.txt 1025 10 input_queue

doc23.txt 2020 11 input_queue

doc24.txt 347 12 input_queue

doc26.txt 789 13 input_queue

doc27.txt 257 14 input_queue

doc28.txt 1675 15 input_queue

doc29.txt 9837 16 input_queue

doc20.txt 721 17 input_queue

The tool displays 4 columns for each document in the queue, namely, the document
name, the size, the offset number, and the queue name.

The above example showed the documents of the input queue waiting to be processed.
The “-a” switch shows all the documents in the queue. Remember that Kafka keeps all
documents in the queues for some time (by default, seven days). The following command
shows all the documents in the queue.

$ opt/sbin/ls_queue -a

doc1.txt 762 1 input_queue

doc0.txt 4678 2 input_queue

doc3.txt 9876 3 input_queue

doc4.txt 189 4 input_queue

doc6.txt 875 5 input_queue

doc7.txt 8989 6 input_queue

doc8.txt 6735 7 input_queue

doc9.txt 9875 8 input_queue

doc18.txt 1209 9 input_queue

doc20.txt 1025 10 input_queue

doc23.txt 2020 11 input_queue

doc24.txt 347 12 input_queue

doc26.txt 789 13 input_queue

doc27.txt 257 14 input_queue

doc28.txt 1675 15 input_queue

NewsReader: ICT-316404 February 3, 2015

System Design, Final 96/102

doc29.txt 9837 16 input_queue

doc20.txt 721 17 input_queue

It is also possible to list the documents of the output query, using the “-q” command
switch to select the queue name:

$ opt/sbin/ls_queue -q output_queue

doc1.txt_065a4fe5686a240b0569d35c6f04b025.naf 222715 21 output_queue

doc0.txt_0ff7e7f4e55ad14f085aada286f0b718.naf 219339 22 output_queue

doc3.txt_2ab255aac76c7b7110be1fe7cf9bfd0e.naf 214548 23 output_queue

doc4.txt_3762e590fe5ba62e96845491acda0656.naf 213492 24 output_queue

doc6.txt_98aef58c8b9b824006dd3c5a0d4d87cb.naf 212985 25 output_queue

doc7.txt_d0af8c39cd227492e6d6cf656be19491.naf 211940 26 output_queue

doc8.txt_45d6c827fbab1ef8f211a2a0ed2d448c.naf 210390 27 output_queue

doc9.txt_5cd1fbedf874d25391ba78ea789ebe90.naf 209767 28 output_queue

doc18.tx_621f460498502b42d4a9ddf2401349f9.naf 209104 29 output_queue

Note that these examples show documents consumed from the input queue are already
processed and stored in the output queue.

flush queue

Once the documents are processed, they are stored in the output queue. The boss ma-
chine contains a consumer that continuously pulls from the output queue and stores the
documents in the docs/output directory. However, sometimes it is interesting to dump
all the current content of a queue (input or output) into a directory. The flush queue

accomplishes this task.

$ opt/sbin/flush_queue -q output_queue -o path_to_docs

The parameters of the script are the following:

• -o (required): the directory to dump the documents.

• -f (optional): by default the script will not overwrite any existing document in the
output directory. Set this parameter to overwrite the documents.

• -q (optional): the queue to flush. If omitted, the script dumps the document from
the output queue queue.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 97/102

Logs

The cluster maintains a log of all the documents when passing over the several stages of the
pipeline. Each time the document processing starts, or when it enters some particular stage
of the topology (in any worker machine), a log entry is created. Besides, if a document
processing fails a record is created with the name of the document and the module which
caused the error.

All the log records are stored into the mongoDB database, and are accessible from
within the boss node. To access the logs, one has to first enter the so called mongo shell.
Being logged into the boss machine, run the mongo command:

$ mongo

MongoDB shell version: 2.4.6

connecting to: test

> use newsreader-pipeline

switched to db newsreader-pipeline

> db.log.find()

the find command will show all entries of the log database. Each log entry has the
following fields:

• id: internal ID.

• tag: the entry type. Possible values:

– DOC START -¿ the document ”doc id” enters the pipeline

– DOC BOLT RCV -¿ the document ”doc id” enters the bolt ”module id”

– DOC BOLT EMT -¿ the document ”doc id” exits the ”module id”

– DOC BOLT FAIL -¿ the document name ”doc id” failed in bolt ”module id”

– DOC FAIL -¿ the document ”doc id” failed

– DOC ACK -¿ the document ”doc id” worked as expected

• doc id: the document name.

• module id: the NLP module.

• hostname: the node name.

• timestamp: the time stamp in mongoDB format.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 98/102

Find documents with errors, also displaying the bolt which caused the error
and the worker node

> db.log.find({ tag: "DOC_BOLT_FAIL" }, { _id:0, doc_id:1, module_id:1, hostname:1 })

{ "doc_id" : "4MSN-CTV0-TX2J-N1W8_8bb9805598b55e10850852165981897f.xml",

"module_id" : "FBK-time", "hostname" : "workervm1" }

{ "doc_id" : "4MR6-N790-TX33-71WM_bab251443f3e6869306c87f8173e11c4.xml",

"module_id" : "EHU-corefgraph", "hostname" : "workervm2" }

{ "doc_id" : "4MRN-CMP0-TX37-G2P3_82436b4a93ef1826a280763ac2838a74.xml",

"module_id" : "EHU-corefgraph", "hostname" : "workervm1" }

{ "doc_id" : "4MRP-5X50-TX2J-N2H8_d83f60a3c7a5e783b8e84fd5d13a9b69.xml",

"module_id" : "EHU-corefgraph", "hostname" : "workervm3" }

...

Find successfully analyzed documents

> db.log.find({ tag: "DOC_ACK" }, { _id:0, doc_id:1 })

{ "doc_id" : "4MR1-81M0-TWX2-W2WD_f5341438336a8f739fd3bb2192a3374b.xml" }

{ "doc_id" : "4MR2-D9G0-TX52-F26P_5484c46f08a6242518fa389f8f1e4851.xml" }

{ "doc_id" : "4MRC-JSD0-TX2J-N1V0_7a5dc0f87c195104251969c9ca100c6c.xml" }

{ "doc_id" : "4MRK-J360-TX2J-N39T_f51f321d7a7a60d8c802bfece498027b.xml" }

...

C.3.3 Starting and stopping the services

There are a number of scripts in the boss VM (under the opt/init.d directory) to start
and stop many services. It is convenient to stop the puppet agent before stopping services:

$ sudo /etc/init.d/puppet stop

Likewise, the puppet agent needs to be restarted after the services are running again:

$ sudo /etc/init.d/puppet start

Here is a list of the provided scripts to start or stop the services. All these scripts
require one command, start or stop, which starts or stops the service, respectively:

• kafka server: it needs a parameter, start or stop. The script starts or stops the
kafka service (document queues), respectively.

• zookeeper server: start or stop the zookeeper service.

• storm boss server: start or stop the STORM nimbus service.

• boss servers: this script start or stops all services in the boss VM.

NewsReader: ICT-316404 February 3, 2015

System Design, Final 99/102

• wipe all boss: this script is special and erases all documents of the queues. Use it
with care! It is recommended to first dump the documents of the queues in some
temporary directory before erasing the queues.

The worker services can also be started/stopped:

• worker servers: start or stop all the services in the worker VM. Run this script
inside the worker VM. Alternatively, run this script from inside the boss VM using
the pdsh tool. Inside the boss VM, write the following:

$ sudo pdsh -w ip_of_worker /home/newsreader/opt/sbin/worker_servers stop

$ sudo pdsh -w ip_of_worker /home/newsreader/opt/sbin/worker_servers start

NewsReader: ICT-316404 February 3, 2015

System Design, Final 100/102

NewsReader: ICT-316404 February 3, 2015

System Design, Final 101/102

References

[Beloki et al., 2014] Zuhaitz Beloki, German Rigau, Aitor Soroa, Antske Fokkens, Piek
Vossen, Marco Rospocher, Francesco Corcoglioniti, Roldano Cattoni, Thomas Ploeger,
and Willem Robert van Hage. System design, 2014.

[Cherniack et al., 2003] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Don-
ald Carney, Ugur Cetintemel, Ying Xing, and Stan Zdonik. Scalable Distributed Stream
Processing. In CIDR 2003 - First Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, January 2003.

[Dean and Ghemawat, 2008] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[Fokkens et al., 2013] Antske Fokkens, Marieke van Erp, Piek Vossen, Sara Tonelli,
Willem Robert van Hage, Luciano Serafini, Rachele Sprugnoli, and Jesper Hoeksema.
GAF: A grounded annotation framework for events. In Proceedings of the first Workshop
on Events: Definition, Dectection, Coreference and Representation, Atlanta, USA, 2013.

[Fokkens et al., 2014] Antske Fokkens, Aitor Soroa, Zuhaitz Beloki, Niels Ockeloen, Ger-
man Rigau, Willem Robert van Hage, and Piek Vossen. NAF and GAF: Linking lin-
guistic annotations. In To appear in Proceedings of 10th Joint ACL/ISO Workshop on
Interoperable Semantic Annotation (ISA-10), 2014.

[Ide et al., 2003] Nancy Ide, Laurent Romary, and Éric Villemonte de La Clergerie. In-
ternational standard for a linguistic annotation framework. In Proceedings of the HLT-
NAACL 2003 Workshop on Software Engineering and Architecture of Language Tech-
nology Systems (SEALTS). Association for Computational Linguistics, 2003.

[Moreau et al., 2012] Luc Moreau, Paolo Missier, Khalid Belhajjame, Reza B’Far, James
Cheney, Sam Coppens, Stephen Cresswell, Yolanda Gil, Paul Groth, Graham Klyne,
Timothy Lebo, Jim McCusker, Simon Miles, James Myers, Satya Sahoo, and Curt
Tilmes. PROV-DM: The PROV Data Model. Technical report, 2012.

[Rospocher et al., 2015] Marco Rospocher, Piek Vossen, Tommaso Castelli, and Agata Cy-
bulska. Event narrativemodule, version 2. NewsReader Deliverable 5.1.2, 2015.

[Tonelli et al., 2014] Sara Tonelli, Rachele Sprugnoli, and Manuela Speranza. Newsreader
guidelines for annotation at document level nwr-2014-2. Technical report, 2014.

[van Hage et al., 2011] Willem Robert van Hage, Véronique Malaisé, Roxane Segers, Laura
Hollink, and Guus Schreiber. Design and use of the Simple Event Model (SEM). J. Web
Sem., 9(2):128–136, 2011. http://dx.doi.org/10.1016/j.websem.2011.03.003.

[Venner et al., 2014] Jason Venner, Sameer Wadkar, and Madhu Siddalingaiah. Pro
Apache Hadoop. Apress, 2014.

NewsReader: ICT-316404 February 3, 2015

http://dx.doi.org/10.1016/j.websem.2011.03.003

System Design, Final 102/102

[White, 2009] Tom White. Hadoop: the definitive guide: the definitive guide. ” O’Reilly
Media, Inc.”, 2009.

NewsReader: ICT-316404 February 3, 2015

	Introduction and scope
	Efficiency Experiments
	Performance per module
	A more detailed analysis of the performance per module
	Observations

	Architectures for parallel NLP processing
	Linguistic modules for Event Detection
	Frameworks for Big Data analysis

	Streaming architecture using Storm
	Newsreader processing cluster
	NLP processing topology
	MongoDB integration
	VM from scratch

	Experiments
	Batch and Streaming Processing
	Non linear topologies

	Batch architecture using Hadoop
	Hadoop
	Cascading
	Scaling up news processing
	Processing the car data
	Future work and possible improvements

	Modeling Provenance and Attribution
	Provenance and Attribution
	Attribution annotations
	Proposed attribution models
	Requirements

	Modeling attribution

	Conversion of NAF to SEM
	Architecture for processing NAF to SEM
	Performance of the NAF to SEM processing on the automotive data set

	The KnowledgeStore
	Setup and Configuration
	Experiments

	Conclusion and future work
	Processing step per phase for individual modules
	Alternative proposals for modeling attribution
	Proposal 1: Attribution applies to the statements
	Proposal 2: Attribution applies to the relation between source and statement
	Proposal 3: Attribution is assigned by reifying relations
	Concluding remarks

	NewsReader architecture for distributed NLP processing
	VM from scratch
	Create a basic cluster
	Making copies of worker VMs
	Virtual machines XML definitions
	Booting and stopping the cluster
	Deploying worker VMs into different host machines
	Knowing which machines are connected to the boss VM

	Running the topology
	Topology XML specification

	Troubleshooting and tools
	Synchronizing the modules
	Document queue
	Starting and stopping the services

